自动化测试中几种常见验证码的处理方式及如何实现?

UI自动化测试时,需要对验证码进行识别处理,有很多方式,每种方式都有自己的特点,以下是一些常用处理方法,仅供参考。

1 去掉验证码

  • 从自动化的本质上来讲,主要是提升测试效率等,但是为了去研究验证码以及提升验证码的识别效率,是需要投入比较大的时间的;
  • 去掉验证码无疑是最简单的方式,而且对于开发而言这样做,工作量也不是很大;
  • 但是建议在测试环境使用,生产环境禁用,因为存在安全问题。

2 设置万能码

  • 这个是笔者刚开始做自动化时首选的一个处理方法;
  • 因为既测试到了验证码的功能,而且也不用投入太大的精力去研究如何进行验证码识别;
  • 另外对于开发来说,内置一个万能验证码也是非常简单的事情;
  • 对于写自动化脚本的人来说也是非常的方便,效率也高;
  • 但这个万能验证码仅限相关人员知道,避免存在安全隐患。

3 保留一个资源

  • 有点验证码实则就是图片资源;
  • 其实就是在制定的文件夹资源库中随机抽取一张,那么只需要将服务器上的所有图片删除,仅保留一张即可;
  • 说白了就相当于固定验证码。

4 光学字符识别

  • 其实就是通过Python-tesseract模块来只能识别图片中的验证码;
  • Python-tesseract是光学字符识别Tesseract OCRpython封装类;
  • 其能够读取大部分常规图片文件,比如JPG、GIF、PNG、TIFF等;
  • 这个笔者也尝试过,因为现在的图片验证码越来越复杂,其实有时候识别率并不高;
  • 下边我们尝试着使用一下。

4.1 识别对象

  • 我们收集了几个图片验证码(来源于网络,仅供参考):从左到右依次是image01.jpg-image04.jpg:

    自动化测试中几种常见验证码的处理方式及如何实现?_第1张图片

现在我也找了很多测试的朋友,做了一个分享技术的交流群,共享了很多我们收集的技术文档和视频教程。
如果你不想再体验自学时找不到资源,没人解答问题,坚持几天便放弃的感受
可以加入我们一起交流。而且还有很多在自动化,性能,安全,测试开发等等方面有一定建树的技术大牛
分享他们的经验,还会分享很多直播讲座和技术沙龙
可以免费学习!划重点!开源的!!!
qq群号:110685036【暗号:csdn999】

自动化测试中几种常见验证码的处理方式及如何实现?_第2张图片

4.2 pytesseract安装

  • 直接使用命令安装即可:
pip install Pillow

自动化测试中几种常见验证码的处理方式及如何实现?_第3张图片

4.3 Pillow安装

  • 直接使用命令:
pip install Pillow

自动化测试中几种常见验证码的处理方式及如何实现?_第4张图片

4.4 OCR安装

  • 直接在下载即可:OCR官网;
  • 选择对应的版本下载即可:

    自动化测试中几种常见验证码的处理方式及如何实现?_第5张图片

  • 按照提示安装完成:

    自动化测试中几种常见验证码的处理方式及如何实现?_第6张图片

  • 配置环境变量,将其根目录添加到path环境变量中:

    自动化测试中几种常见验证码的处理方式及如何实现?_第7张图片

4.5 识别原理

  • 基本思路是通过图片降噪、图片切割等,输出图像文本;
  • 图片降噪就是将图片中一些不需要的信息去除,比如背景、干扰像素、干扰线等。
  • 如果验证码是彩色的背景,其实就是把每个像素放在五维空间,即X、Y、R、G、B
  • X、Y是像素的二维平面坐标,RGB代表像素所对应的颜色。

4.6 处理过程

4.6.1 转灰度处理

  • 导入需要的包:
from PIL import Image
  • 打开需要分析的图像:
image = Image.open("./image01.jpg")
  • 将彩色图像转化为灰度图像(RGB转为HSI色彩空间),采用L分量:
# 彩色转灰度
img_01 = image.convert("L")
img_01.show()
  • 以上完整代码为(使用image01.jpg):
# 导入Image包
from PIL import Image

# 打开图像
image = Image.open("./image01.jpg")
# 彩色转灰度
img_01 = image.convert("L")
img_01.show()
  • 转灰度后图像如下:

    自动化测试中几种常见验证码的处理方式及如何实现?_第8张图片

4.6.2 二值化处理

  • 图像分割常用的方法就是二值化处理;
  • 二值化处理就是二值化图像时,将大于某个临界灰度值的像素灰度设置为灰度的极大值,把小于这个值的像素灰度设为灰度的极小值,取值范围一般为0-1
  • 二值化算法不同,可分固定阈值和自适应阈值,比如这个固定阈值如下(使用image02.jpg):
# 导入Image包
from PIL import Image

# 打开图像
image = Image.open("./image02.jpg")
# 二值化处理
img_02 = image.point(lambda x:0 if x<143 else 255)
img_02.show()
  • 二值化后的效果:

自动化测试中几种常见验证码的处理方式及如何实现?_第9张图片

  • 我们结合前两种方法,把image03.jpg先灰度再二值化处理后输出对应的文字:
# 导入Image包
from PIL import Image
from pytesseract import pytesseract

# 打开图像
image = Image.open("./image03.jpg")

# 灰度处理
img_new = image.convert("L")
# 二值化处理
img_03 = img_new.point(lambda x:0 if x<143 else 255)
img_03.show()
out_img = pytesseract.image_to_string(img_03)
print(out_img)
  • image03.jpg原图和处理后效果:

自动化测试中几种常见验证码的处理方式及如何实现?_第10张图片

  • 结果输出:

    自动化测试中几种常见验证码的处理方式及如何实现?_第11张图片

4.6.3 图像增强

  • 为了排除更多的干扰,我们可以使用将图片增强显示,或者将图片转成黑白;
  • 我们在以上代码继续添加:
from PIL import ImageEnhance

img_enh = ImageEnhance.Contrast(img_03)
img_enh01 = img_enh.enhance(4)
img_enh01 .show()

out_img = pytesseract.image_to_string(img_enh01)

自动化测试中几种常见验证码的处理方式及如何实现?_第12张图片

4.6.4 完整代码

  • 我们使用image04.jpg输出完整代码:
# 导入Image包
from PIL import Image
from pytesseract import pytesseract
from PIL import ImageEnhance

# 打开图像
image = Image.open("./image04.jpg")

# 灰度处理
img_new = image.convert("L")

# 二值化处理
img_04 = img_new.point(lambda x:0 if x<143 else 255)

# 图像增强
img_enh = ImageEnhance.Contrast(img_04)
img_enh01 = img_enh.enhance(4)

# 处理后图片
img_enh01.show()

# 提取图片文字
out_img = pytesseract.image_to_string(img_enh01)
print(out_img)
  • 处理前后的效果:

    自动化测试中几种常见验证码的处理方式及如何实现?_第13张图片

5 打码平台

  • 另外我们可以通过打码平台来实现图片文字提取,比如超人、图鉴、斐斐等等;
  • 比如图鉴平台,可以参考它的开发文档;

    自动化测试中几种常见验证码的处理方式及如何实现?_第14张图片

6 记录cookie

  • 通过添加登录成功时所携带的cookie来跳过登录;
  • selenium中使用add_cookie()方法将用户名和密码等登录信息写入浏览器的cookie中,再次登录时直接读取浏览器cookie即可。
  • 此处代码省略后续添加。

最后感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走!

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
 

在这里插入图片描述

你可能感兴趣的:(自动化测试,技术分享,软件测试,python,pytest,selenium,自动化测试,软件测试,接口测试)