在上篇Runtime学习之objc_msgSend分析中我们简单的介绍了下对于Runtime的理解,以及objc_msgSend消息转发的流程做了简单介绍,那么今天我们就整体的做一次流程的分析和梳理,方便后续的学习总结
ENTRY _objc_msgSend
UNWIND _objc_msgSend, NoFrame
cmp p0, #0 // nil check and tagged pointer check
#if SUPPORT_TAGGED_POINTERS
b.le LNilOrTagged // (MSB tagged pointer looks negative)
#else
b.eq LReturnZero
#endif
ldr p13, [x0] // p13 = isa
GetClassFromIsa_p16 p13, 1, x0 // p16 = class
LGetIsaDone:
// calls imp or objc_msgSend_uncached
CacheLookup NORMAL, _objc_msgSend, __objc_msgSend_uncached
汇编解析:
1.cmp p0, #0 判断p0(消息接受者)是否存在,不存在则重新开始执行objc_msgSend
2.ldr p13, [x0]通过p13取isa
3.GetClassFromIsa_p16 p13, 1, x0通过isa取class也就是p16
// NORMAL, _objc_msgSend, __objc_msgSend_uncached
.macro CacheLookup Mode, Function, MissLabelDynamic, MissLabelConstant
// requirements:
//
// GETIMP:
// The cache-miss is just returning NULL (setting x0 to 0)
//缓存未命中返回nil
//
// NORMAL and LOOKUP:
// - x0 contains the receiver 接收器
// - x1 contains the selector 选择器
// - x16 contains the isa isa
// - other registers are set as per calling conventions
//
mov x15, x16 // stash the original isa
LLookupStart\Function:
// p1 = SEL, p16 = isa
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS
ldr p10, [x16, #CACHE] // p10 = mask|buckets
lsr p11, p10, #48 // p11 = mask
and p10, p10, #0xffffffffffff // p10 = buckets
and w12, w1, w11 // x12 = _cmd & mask
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
ldr p11, [x16, #CACHE] // p11 = mask|buckets
//为了方便查看 换行分开
#if CONFIG_USE_PREOPT_CACHES
//获取buckets
#if __has_feature(ptrauth_calls)
tbnz p11, #0, LLookupPreopt\Function
and p10, p11, #0x0000ffffffffffff // p10 = buckets
#else
and p10, p11, #0x0000fffffffffffe // p10 = buckets
tbnz p11, #0, LLookupPreopt\Function
#endif
eor p12, p1, p1, LSR #7
and p12, p12, p11, LSR #48 // x12 = (_cmd ^ (_cmd >> 7)) & mask
#else
and p10, p11, #0x0000ffffffffffff // p10 = buckets
and p12, p1, p11, LSR #48 // x12 = _cmd & mask
#endif // CONFIG_USE_PREOPT_CACHES
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
//#define CACHE (2 * __SIZEOF_POINTER__)
ldr p11, [x16, #CACHE] // p11 = mask|buckets
and p10, p11, #~0xf // p10 = buckets
and p11, p11, #0xf // p11 = maskShift
mov p12, #0xffff
lsr p11, p12, p11 // p11 = mask = 0xffff >> p11
and p12, p1, p11 // x12 = _cmd & mask
#else
#error Unsupported cache mask storage for ARM64.
#endif
add p13, p10, p12, LSL #(1+PTRSHIFT)
// p13 = buckets + ((_cmd & mask) << (1+PTRSHIFT))
// do {
1: ldp p17, p9, [x13], #-BUCKET_SIZE // {imp, sel} = *bucket--
cmp p9, p1 // if (sel != _cmd) {
b.ne 3f // scan more
// } else {
2: CacheHit \Mode // hit: call or return imp
// }
3: cbz p9, \MissLabelDynamic // if (sel == 0) goto Miss;
cmp p13, p10 // } while (bucket >= buckets)
b.hs 1b
// wrap-around:
// p10 = first bucket
// p11 = mask (and maybe other bits on LP64)
// p12 = _cmd & mask
//
// A full cache can happen with CACHE_ALLOW_FULL_UTILIZATION.
// So stop when we circle back to the first probed bucket
// rather than when hitting the first bucket again.
//
// Note that we might probe the initial bucket twice
// when the first probed slot is the last entry.
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS
add p13, p10, w11, UXTW #(1+PTRSHIFT)
// p13 = buckets + (mask << 1+PTRSHIFT)
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
add p13, p10, p11, LSR #(48 - (1+PTRSHIFT))
// p13 = buckets + ((mask & _cmd) << 1+PTRSHIFT)
// see comment about maskZeroBits
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
add p13, p10, p11, LSL #(1+PTRSHIFT)
// p13 = buckets + ((mask & _cmd) << 1+PTRSHIFT)
#else
#error Unsupported cache mask storage for ARM64.
#endif
add p12, p10, p12, LSL #(1+PTRSHIFT)
// p12 = first probed bucket
// do {
4: ldp p17, p9, [x13], #-BUCKET_SIZE // {imp, sel} = *bucket--
cmp p9, p1 // if (sel == _cmd)
b.eq 2b // goto hit
cmp p9, #0 // } while (sel != 0 &&
ccmp p13, p12, #0, ne // bucket > first_probed)
b.hi 4b
LLookupEnd\Function:
LLookupRecover\Function:
b \MissLabelDynamic
#if CONFIG_USE_PREOPT_CACHES
#if CACHE_MASK_STORAGE != CACHE_MASK_STORAGE_HIGH_16
#error config unsupported
#endif
LLookupPreopt\Function:
#if __has_feature(ptrauth_calls)
and p10, p11, #0x007ffffffffffffe // p10 = buckets
autdb x10, x16 // auth as early as possible
#endif
// x12 = (_cmd - first_shared_cache_sel)
adrp x9, _MagicSelRef@PAGE
ldr p9, [x9, _MagicSelRef@PAGEOFF]
sub p12, p1, p9
// w9 = ((_cmd - first_shared_cache_sel) >> hash_shift & hash_mask)
#if __has_feature(ptrauth_calls)
// bits 63..60 of x11 are the number of bits in hash_mask
// bits 59..55 of x11 is hash_shift
lsr x17, x11, #55 // w17 = (hash_shift, ...)
lsr w9, w12, w17 // >>= shift
lsr x17, x11, #60 // w17 = mask_bits
mov x11, #0x7fff
lsr x11, x11, x17 // p11 = mask (0x7fff >> mask_bits)
and x9, x9, x11 // &= mask
#else
// bits 63..53 of x11 is hash_mask
// bits 52..48 of x11 is hash_shift
lsr x17, x11, #48 // w17 = (hash_shift, hash_mask)
lsr w9, w12, w17 // >>= shift
and x9, x9, x11, LSR #53 // &= mask
#endif
ldr x17, [x10, x9, LSL #3] // x17 == sel_offs | (imp_offs << 32)
cmp x12, w17, uxtw
.if \Mode == GETIMP
b.ne \MissLabelConstant // cache miss
sub x0, x16, x17, LSR #32 // imp = isa - imp_offs
SignAsImp x0
ret
.else
b.ne 5f // cache miss
sub x17, x16, x17, LSR #32 // imp = isa - imp_offs
.if \Mode == NORMAL
br x17
.elseif \Mode == LOOKUP
orr x16, x16, #3 // for instrumentation, note that we hit a constant cache
SignAsImp x17
ret
.else
.abort unhandled mode \Mode
.endif
5: ldursw x9, [x10, #-8] // offset -8 is the fallback offset
add x16, x16, x9 // compute the fallback isa
b LLookupStart\Function // lookup again with a new isa
.endif
#endif // CONFIG_USE_PREOPT_CACHES
.endmacro
这里的汇编代码很多,并且有很多条件判断,几个重要部分我都空了几行,方便查看,接下来还是捡重点解析:
1.ldr p11, [x16, #CACHE],这里源码有注释CACHE 16字节,也就是通过isa内存平移获取cache,然后cache的首地址不就是 (bucket_t * ) 吗
2.接下来的操作and p10, p11, #0x0000ffffffffffff以及and p12, p1, p11, LSR #48,说白了就是去掩码的过程,从而获取真正的bucktes
3.add p13, p10, p12, LSL #(1+PTRSHIFT)这一步其实可以看作是源码中前面几步的简写,也就是去除掩码后bucket的内存平移,p13 = buckets + ((mask & _cmd) << 1+PTRSHIFT)就是((mask & _cmd) << 4),相当于buckets平移index*16字节
4.ldp p17, p9, [x13],p17 p9分别取bucket的imp,sel,下面的意思就是进行对比p9和p1,如果相同就找到了对应的方法,返回对应imp,走CacheHit
5.如果不相同,cbz p9 向前查找下一个bucket,一直循环下去,知道找到对应的方法
6.但是如果查找完了呢,结合旁边的注释goto Miss,也就是说会走MissLabelDynamic,根据前面传入的参数可以知道,他就是函数 _objc_msgSend_uncached
注意:这里有个宏定义CacheHit,我们分别看一下怎么走的
CacheHit 汇编
// CacheHit: x17 = cached IMP, x10 = address of buckets, x1 = SEL, x16 = isa
.macro CacheHit
.if $0 == NORMAL
TailCallCachedImp x17, x10, x1, x16 // authenticate and call imp
.elseif $0 == GETIMP
mov p0, p17
cbz p0, 9f // don't ptrauth a nil imp
AuthAndResignAsIMP x0, x10, x1, x16 // authenticate imp and re-sign as IMP
9: ret // return IMP
.elseif $0 == LOOKUP
// No nil check for ptrauth: the caller would crash anyway when they
// jump to a nil IMP. We don't care if that jump also fails ptrauth.
AuthAndResignAsIMP x17, x10, x1, x16 // authenticate imp and re-sign as IMP
cmp x16, x15
cinc x16, x16, ne // x16 += 1 when x15 != x16 (for instrumentation ; fallback to the parent class)
ret // return imp via x17
.else
.abort oops
.endif
.endmacro
TailCallCachedImp 汇编
.macro TailCallCachedImp
// $0 = cached imp, $1 = address of cached imp, $2 = SEL, $3 = isa
// x17 = cached IMP, x10 = address of buckets, x1 = SEL, x16 = isa
// x17 ^ 类 = 编码 imp
// call imp objc_msgSend (sel -> imp) 没有找到
eor $0, $0, $3
br $0
.endmacro
1.判断recevier(消息接受者) 是否存在
2.通过recevier获取isa,通过isa获取class(p16)
3.通过class首地址内存平移获取cache(bucket mask)
4.bucket掩码获取bucket
5.mask掩码获取mask
6.insert 哈希函数 (mask_t)(value & mask)
7.第一次查找通过index
8.bucket + index 在整个缓存里面内存平移获取的第几个bucket
9.通过bucket获取imp,sel(p17,p9)
10.sel比较 sel == _cmd ->cacheHit ->imp^isa = imp(br) 调用imp
11.不相等,通过bucket的index- - 再次平移 直到缓存命中
12.死循环遍历
13.如果完全找不到 MissLabelDynamic
就是走__objc_msgSend_uncached ,也就是方法的慢速查找
__objc_msgSend_uncached前面的汇编代码如下
.endmacro
STATIC_ENTRY __objc_msgSend_uncached
UNWIND __objc_msgSend_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band p15 is the class to search
MethodTableLookup
TailCallFunctionPointer x17
/**
这是TailCallFunctionPointer内容
.macro TailCallFunctionPointer
// $0 = function pointer value
br $0
.endmacro
**/
END_ENTRY __objc_msgSend_uncached
STATIC_ENTRY __objc_msgLookup_uncached
UNWIND __objc_msgLookup_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band p15 is the class to search
//可以发现 MethodTableLookup才是重点
MethodTableLookup
ret
END_ENTRY __objc_msgLookup_uncached
可以看出MethodTableLookup是关键点,继续查看
.macro MethodTableLookup
SAVE_REGS MSGSEND
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
// receiver and selector already in x0 and x1
mov x2, x16
mov x3, #3
bl _lookUpImpOrForward
// IMP in x0
mov x17, x0
RESTORE_REGS MSGSEND
.endmacro
可以看出最终imp存在x0寄存器,x0寄存器是默认返回值的寄存器,所以_lookUpImpOrForward里面应该会有imp查找得结果,但是你会发现_lookUpImpOrForward搜不到对应的汇编代码,原来从这里开始就走回了C函数了哦
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
if (slowpath(!cls->isInitialized())) {
behavior |= LOOKUP_NOCACHE;
}
runtimeLock.lock();
//判断类是否已经注册,注册后会加入allocatedClasses表中。
checkIsKnownClass(cls);
//获取实现类 以及父类 元类
cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE);
runtimeLock.assertLocked();
curClass = cls;
for (unsigned attempts = unreasonableClassCount();;) {
if (curClass->cache.isConstantOptimizedCache(/* strict */true)) {
#if CONFIG_USE_PREOPT_CACHES
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
curClass = curClass->cache.preoptFallbackClass();
#endif
} else {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
// 父类 快速 -> 慢速 ->
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
//动态方法决议
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
if (fastpath((behavior & LOOKUP_NOCACHE) == 0)) {
#if CONFIG_USE_PREOPT_CACHES
while (cls->cache.isConstantOptimizedCache(/* strict */true)) {
cls = cls->cache.preoptFallbackClass();
}
#endif
log_and_fill_cache(cls, imp, sel, inst, curClass);
}
done_unlock:
//解锁
runtimeLock.unlock();
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
其实在前面的篇章cache结构分析讲解中有提到过这个流程,但是没有具体分析,后续会详细补充,下面我们来逐步分析总结上面的流程
1.checkIsKnownClass,判断类是否已经注册,注册后会存入allocatedClasses表
2.realizeAndInitializeIfNeeded_locked,初始化实现类,以及父类和元类
3.curClass->cache.isConstantOptimizedCache,查找共享缓存是否存在imp,有就直接返回跳转done_unlock(一般不会走步骤2,因为毕竟之前已经快速查找过)
4.getMethodNoSuper_nolock(curClass, sel)在当前类中查找imp,如果有跳转done
5.如果没有curClass = curClass->getSuperclass()获取父类,并判断是否存在,如果不存在直接返回forward_imp
6.imp = cache_getImp(curClass,sel)快速查找父类方法,如果返回的是查找结果是forward_imp,也就是没找到,直接跳出循环,如果找到了,跳转done
7.判断slowpath(behavior & LOOKUP_RESOLVER,执行resolveMethod_locked,按照注释的意思是找不到实现,请尝试一次方法解析程序。也就是后续会提到的动态方法决议
8.done里面执行了函数log_and_fill_cache,而该函数里面执行的是cls->cache.insert(sel, imp, receiver),方法的插入!!!也就是说找到了正确的imp后,就会返回imp,并且插入缓存cache中,以便下次快速查找
cache_getImp汇编
STATIC_ENTRY _cache_getImp
GetClassFromIsa_p16 p0, 0
CacheLookup GETIMP, _cache_getImp, LGetImpMissDynamic, LGetImpMissConstant
LGetImpMissDynamic:
mov p0, #0
ret
LGetImpMissConstant:
mov p0, p2
ret
END_ENTRY _cache_getImp
相信大家不陌生,这就是前面讲到的快速查找流程的汇编。
注意: 结合前面第6步骤拆开解析: curClass是当前类的父类,而CacheLookup也就是前面说的通过一系列地址偏移操作查找imp得过程,找到了imp走CacheHit,没找到就是走MissLabelDynamic,而此时的MissLabelDynamic对应的参数是cache_getImp里面的LGetImpMissDynamic,这结合汇编代码来看就是返回nil,也就意味着前面的第7,8步骤就不会走了,而是重新开始循环再往父类查找,直到没有父类也就是走到了根类(如:NSobject)
关于 behavior 说明(借鉴某大佬)
/* method lookup */
enum {
LOOKUP_INITIALIZE = 1,//控制是否去进行类的初始化。有值初始化,没有不初始化
LOOKUP_RESOLVER = 2,//是否进行动态方法决议。有值决议,没有值不决议
LOOKUP_NIL = 4,//是否进行forward。有值不进行,没有值进行
LOOKUP_NOCACHE = 8,//是否插入缓存。有值不插入缓存,没有值插入
};
前面我们提到了一个函数getMethodNoSuper_nolock是查找imp得关键,我们一步步进去查看
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
进入search_method_list_inline
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
//修复method_list
int methodListIsFixedUp = mlist->isFixedUp();
//判断method_list的有序性
int methodListHasExpectedSize = mlist->isExpectedSize();
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
//有序且method_list修复好 进行二分查找
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
//未排序方法列表的线性搜索 无序列表
if (auto *m = findMethodInUnsortedMethodList(sel, mlist))
return m;
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name() == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
那么通过我们不断进去查看一下,就找到了下面的算法核心,也就是二分查找算法,如下
findMethodInSortedMethodList(SEL key, const method_list_t *list, const getNameFunc &getName)
{
ASSERT(list);
auto first = list->begin();
auto base = first;
decltype(first) probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
// 1000 - 0100
// 8 - 1 = 7 >> 0111 -> 0011 3 >> 1 == 1
// 0 + 4 = 4
// 5 - 8
// 6-7
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)getName(probe);
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)getName((probe - 1))) {
probe--;
}
return &*probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
1.count方法数量,base相当于一个基数初始0,用于中间运算的,keyValue就是把sel强转类型便于作比较,probeValue用于当前要对比的keyValue,通过probe转换
2.举例假设count=8,而最终的sel是第6个,循环条件count非零就执行,每次循环count >>= 1也就是count右移1位
3.取第一个对比的probe 进行base + (count >> 1)也就是4
4.因为keyValue > probeValue,6>4成立,base为5,count为7
5.count执行条件右移一位结果为3,probe为base + (count >> 1)也就是5+3>>1,为6
6.因为keyValue == probeValue成立,返回 (&*probe),也就是method_t
可以看出整体走下来,只是走了2次循环判断,大大减少了循环次数,当然大家也可以自己举例尝试
注意:在找到正确keyValue时,里面有个循环判断,通过翻译可以看出,是为了判断分类是否存在该sel,如果有返回分类的sel
总结:本篇大致分析了快速方法查找和慢速查找得流程,至于在上一篇章中说到为什么cache查找要使用汇编?主要是下面几点:
当然里面也还有一些疑问,后续会一一补充,同时也提到了如果两种方法都没有找到对应的方法,会怎么做呢?请看下一篇章动态方法决议