- 7.1.普通一维DP问题
赵鑫亿
c++数据结构与算法c++算法
普通一维DP问题在C++中,一维动态规划(1DDP)是处理线性序列问题的核心方法。这类问题的状态通常只依赖前一两个状态,可以用一维数组(或变量)存储中间结果。以下是详细解析:一、一维DP的核心解题步骤明确问题是否满足DP条件存在重叠子问题(避免重复计算)具有最优子结构(当前最优解依赖子问题最优解)定义状态用dp[i]表示处理到第i个元素时的最优解(或目标值)例如:dp[i]可以表示前i个房屋能偷到
- 《语音识别模式、算法设计与实践》——第一章 语音识别概述
静候光阴
语音识别语音识别人工智能python
专栏总目录1.1走进语音识别1.1.1语音识别的定义定义:语音识别是让机器具备自动接收和分析人类的语音,并最终输出对应文本的过程。目标:将输入语音转化为文字的输出目标实现条件:提前规定好该系统可以接收的语音输入形式,比如单个词、命令短语和连续语音。对应的文本输出形式,可以直接翻译出来的对应文本,也可以是经过编码的特殊字符,比如组成发音的基本单位——音素。由此可知,系统的输入和输出不同,决定了语音识
- TCP和UDP的区别?C++实现
落英缤纷H
tcp/ipudpc++C/C++
TCP和UDP的区别?C++实现TCP和UDP是常用的两种传输层协议,它们在网络编程中占据着重要的位置。TCP是一种面向连接的可靠协议,而UDP则是一种无连接的不可靠协议。本文将详细介绍TCP和UDP的特点、区别以及如何使用C++实现它们。TCP的特点和使用TCP(TransmissionControlProtocol)是一种面向连接的协议,使用TCP协议进行通信的两端需要先建立连接,连接建立后才
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 多维多重背包问题_各种背包五(二维费用背包问题)
zLiM5
多维多重背包问题
问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]
- 【二维费用的完全背包问题】
羊毛多一点
算法学习动态规划
前言简单写一下算法设计与分析这门课的一次实验原题要求是用0-1背包来做,但是老师要求用完全背包来做!一、完全背包与0-1背包有什么区别?0-1背包,顾名思义对于每件物品只能拿1次或者0次;而完全背包对于每件物品的拿取没有次数限制。二、二维费用背包二维费用背包是对于每件物品的拿取要付出两项代价,如:重量和体积。三、0-1背包理解0-1背包对我们理解其他背包问题十分重要,首先说一下0-1背包。问题描述
- 第06章 07 VTK体绘制中的2D纹理映射和3D纹理映射
捕鲸叉
VTK编程学习3dVTK信息可视化
在VTK(VisualizationToolkit)中,体绘制是一种将三维数据转换为二维图像的技术,VTK提供了多种方法来实现体绘制,其中2DTexture-Mapped和3DTexture-Mapped技术是两种常见且重要的技术。下面将分别介绍这两种技术的特点和应用场合,并提供C++示例代码。2DTexture-Mapped技术2DTexture-Mapped技术在VTK中通常用于切片渲染。在这
- 【数据结构与算法】力扣 5. 最长回文子串
秀秀_heo
数据结构与算法leetcode算法职场和发展
题目描述5.最长回文子串给你一个字符串s,找到s中最长的回文子串。示例1:输入:s="babad"输出:"bab"解释:"aba"同样是符合题意的答案。示例2:输入:s="cbbd"输出:"bb"提示:1=0&&rightmaxLen){start=oddStart;maxLen=oddLen;}//处理偶数长度回文let[evenStart,evenLen]=expandAroundCenter
- 探索Web3世界:算法与挖矿详解
Java先进事迹
web3算法
哈希算法:区块链的“数字指纹”区块链的结构类似于链表,数据块一个连着一个,链接在一条或多条链上。每个数据块都至少记录着数据、自己的地址和前一个数据块的地址。每个数据块的“地址”的编码都是独一无二的,通过一种称为哈希算法的技术生成。哈希算法能够将任意长度的数据映射为一个固定长度的唯一编码(哈希值)。即使输入数据发生微小变化,生成的哈希值也会截然不同。我们可以将哈希算法比作一台神奇的调色机。无论你放入
- c++ · binarySearch ( 二分法 )
Le_ee
c++算法蓝桥杯c语言
2025.2.3一:过程二分例1:查找有序数组中某个元素;intbinarySearch(vector&arr,inttarget){//接受有序数组arr和目标值targetintleft=0,right=arr.size()-1;//定义左指针指向数组起始位置(即0下标),右指针为数组最后一个元素的下标while(left&arr,inttarget){intleft=0,right=arr.
- C++计算精解【21】
sakura_sea
游戏引擎与高性能计算c++开发语言
文章目录动手做汇编解释器【4】COCO/R概述变量赋值的ATG生成的代码框架参考文献动手做汇编解释器【4】COCO/R概述Coco/R是一个用于构造词法分析器(LexicalAnalyzers)和语法分析器(SyntaxAnalyzers)的开源工具。它是基于LALR(1)解析技术的,广泛用于编译器设计和软件开发中的语法分析阶段。https://ssw.jku.at/Research/Projec
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- 基于DQ轴谐波提取器的PMSM谐波抑制算法仿真研究:主动注入谐波电压与SVPWM调制策略的效果分析
BIdOeVNkOZSO
算法单片机嵌入式硬件
PMSM谐波抑制算法基于DQ轴谐波提取器的永磁同步电机仿真1.通过谐波提取器,直接提取DQ轴的谐波分量进行抑制,对五七次谐波电流抑制效果效果很好。2.为了放大效果,采用主动注入谐波电压的方法,增大了电机中的谐波分量。3.调制算法采用SVPWM,电流环处搭建了解耦补偿模块,控制效果更好。YID:799786174661444甜水井朴素的梭子蟹永磁同步电机仿真:PMSM谐波抑制算法的探索与实现在电力电
- GEE python——gee_pyccd基于连续监测变化检测(Continuous Change Detection and Classification, CCDC)
此星光明
GEE-PYTHONpython开发语言geeccdc变化检测py连续性
目录简介gee_pyccdPyCCDCCDC算法代码1代码2结果简介gee_pyccd协调在GoogleEarthEngine数据上使用PyCCD的脚本。此存储库与Google或USGS没有正式关联。gee_pyccd是一个基于GoogleEarthEngine平台的Python库,用于对遥感时间序列数据进行变化检测和趋势分析。它实现了基于连续监测变化检测(ContinuousChangeDete
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- 单词搜索--回溯算法
jump_into_zehe
回溯算法字符串
LeetCode单词搜索给定一个二维网格board和一个字典中的单词列表words,找出所有同时在二维网格和字典中出现的单词。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。示例:输入:words=["oath","pea","eat","rain"]andboard=[['o','a','a
- Linux C++ 开发5 - 一文了解CMake构建
c++
1.什么是CMake?1.1.CMake的定义1.2.CMake有哪些优势?1.3.CMake的特点1.4.Cmake、CMakeLists.txt、Make、Makefile之间的关系2.应用案例2.1.项目概述2.2.CMakeLists.txt2.2.1.基本用法2.2.2.完整内容2.2.3.构建执行上一篇《LinuxC++开发4-入门makefile一篇文章就够了》我们讲解了通过Make
- Linux C++ 开发4 - 入门makefile一篇文章就够了
c++
1.make和Makefile1.1.什么是make?1.2.什么是Makefile?1.3.make与Makefile的关系2.Makefile的语法2.1.基本语法2.2.变量2.3.伪目标2.4.模式规则2.5.自动变量2.6.条件判断3.示例演示3.1.编译HelloWorld程序3.2.编译多文件项目3.2.1.项目概述3.2.2.需求分析3.2.3.MakefileV1.03.2.4.
- LeetCode:53.最大子序和
xiaoshiguang3
代码随想录-跟着Carl学算法leetcode算法java动态规划
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!代码随想录LeetCode:53.最大子序和给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。示例1:输入:nums=[-2,1,-3,4,-1,2,1,-5,4]输出:6解释:连续子数组[4,-1,2,1]的和最大,为6。
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- 1 项目概述
40岁的系统架构师
微信小程序
项目篇带着大家一起做项目,其中涉及到产品设计,架构设计和前段后端的开发工作。带着大家一起把项目做起来。开始我们做几个小项目,基本涉及不到架构设计。后面再做涉及到我们前面讲到的架构设计的相关知识,把能用到的技术大体上用一遍。先带着大家做一个无限极返佣的系统和一些赚外快的小项目和一些游戏脚本(主要是按键精灵和C++开发)还有一些爬虫项目,这些项目都是能够给大家带来收益的,创作不易,这些项目可能都要收费
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- 带你从入门到精通——Python(十一. 闭包、装饰器和深浅拷贝)
梦想是成为算法高手
Pythonpython开发语言
建议先阅读我Python专栏中的前置博客,掌握一定的Python前置知识后再阅读本文,链接如下:Python_梦想是成为算法高手的博客-CSDN博客目录十一.闭包、装饰器和深浅拷贝11.1闭包11.1.1作用域11.1.2闭包概述11.1.3global关键字和nonlocal关键字11.2装饰器11.2.1装饰器概述11.2.2装饰器的使用方法11.2.3带参数的语法糖装饰器11.3深浅拷贝11
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- 蓝桥杯python基础算法(2-2)——基础算法(C)——递归
X _X
PythonLanqiao算法
四、递归递归出口:这是递归过程中的终止条件,防止函数无限制地调用自身。当前问题如何变成子问题:这是递归函数中最重要的部分,即如何将当前问题逐步简化为更小的子问题。例题-汉诺塔Hanoi塔由n个大小不同的圆盘和三根木柱a,b,c组成。开始时,这n个圆盘由大到小依次套在a柱上,如图所示。要求把a柱上n个圆盘按下述规则移到c柱上:(1)一次只能移一个圆盘;(2)圆盘只能在三个柱上存放;(3)在移动过程中
- 算法随笔_35: 每日温度
程序趣谈
算法python数据结构
上一篇:算法随笔_34:最后一个单词的长度-CSDN博客=====题目描述如下:给定一个整数数组temperatures,表示每天的温度,返回一个数组answer,其中answer[i]是指对于第i天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用0来代替。示例1:输入:temperatures=[73,74,75,71,69,72,76,73]输出: [1,1,4,2,1,
- 算法随笔_36: 复写零
程序趣谈
算法python数据结构
上一篇:算法随笔_35:每日温度-CSDN博客=====题目描述如下:给你一个长度固定的整数数组arr,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。注意:请不要在超过该数组长度的位置写入元素。请对输入的数组就地进行上述修改,不要从函数返回任何东西。示例1:输入:arr=[1,0,2,3,0,4,5,0]输出:[1,0,0,2,3,0,0,4]解释:调用函数后,输入的数组将被修改为
- 算法随笔_30: 去除重复字母
程序趣谈
算法python数据结构
上一篇:算法随笔_29:最大宽度坡_方法3-CSDN博客=====题目描述如下:给你一个字符串s,请你去除字符串中重复的字母,使得每个字母只出现一次。需保证返回结果的字典序最小(要求不能打乱其他字符的相对位置)。示例1:输入:s="bcabc"输出"abc"=====算法思路:首先我们考虑第一个条件:如何去掉字符串中重复的字母?这个比较简单。我们可以新开辟一个同样长度的新数组s_new来存储最后的
- MATLAB 实现基于MPA(海洋捕食者算法)进行时间序列预测模型的项目详细实例
nantangyuxi
MATLABmatlab算法人工智能回归cnn支持向量机大数据
目录MTFSTLTFSB实她基她MPTFS(海洋捕食者算法)进行时间序列预测模型她项目详细实例...1项目背景介绍...1项目目标她意义...1项目挑战...2项目特点她创新...3项目应用领域...3项目效果预测图程序设计...4项目模型架构...5项目模型描述及代码示例...5项目模型算法流程图...6项目目录结构设计及各模块功能说明...7项目部署她应用...9项目扩展...11项目应该注意
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理