//日志自定义字段:
event_time
url
method
status
sip
user_uip
action_prepend
action_client
2018-09-04T20:27:31+08:00 http://datacenter.bdqn.cn/logs/user?actionBegin=1536150451540&actionClient=Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0&actionEnd=1536150451668&actionName=startEval&actionTest=0&actionType=3&actionValue=272090&clientType=001_kgc&examType=001&ifEquipment=web&isFromContinue=false&skillIdCount=0&skillLevel=0&testType=jineng&userSID=B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3&userUID=272090&userUIP=1.180.18.157 GET 200 192.168.168.64 - - Apache-HttpClient/4.1.2 (java 1.5)
//先按照\t切割,给每一列加上字段名:
event_time : 2018-09-04T20:27:31+08:00
url : http://datacenter.bdqn.cn/logs/user?actionBegin=1536150451540&actionClient=Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0&actionEnd=1536150451668&actionName=startEval&actionTest=0&actionType=3&actionValue=272090&clientType=001_kgc&examType=001&ifEquipment=web&isFromContinue=false&skillIdCount=0&skillLevel=0&testType=jineng&userSID=B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3&userUID=272090&userUIP=1.180.18.157
method : GET
status : 200
sip : 192.168.168.64
user_uip : -
action_prepend : -
action_client : Apache-HttpClient/4.1.2 (java 1.5)
//再把url这一列按照?切割:
http://datacenter.bdqn.cn/logs/user?actionBegin=1536150451540&actionClient=Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0&actionEnd=1536150451668&actionName=startEval&actionTest=0&actionType=3&actionValue=272090&clientType=001_kgc&examType=001&ifEquipment=web&isFromContinue=false&skillIdCount=0&skillLevel=0&testType=jineng&userSID=B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3&userUID=272090&userUIP=1.180.18.157
http://datacenter.bdqn.cn/logs/user
actionBegin=1536150451540&actionClient=Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0&actionEnd=1536150451668&actionName=startEval&actionTest=0&actionType=3&actionValue=272090&clientType=001_kgc&examType=001&ifEquipment=web&isFromContinue=false&skillIdCount=0&skillLevel=0&testType=jineng&userSID=B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3&userUID=272090&userUIP=1.180.18.157
//再把数组中的第二个值按照&切割:
actionBegin=1536150451540
actionClient=Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0
actionEnd=1536150451668
actionName=startEval
actionTest=0
actionType=3
actionValue=272090
clientType=001_kgc
examType=001
ifEquipment=web
isFromContinue=false
skillIdCount=0
skillLevel=0
testType=jineng
userSID=B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3
userUID=272090
userUIP=1.180.18.157
//再按照=切割:
actionBegin 1536150451540
actionClient Mozilla%2F5.0+%28Windows+NT+10.0%3B+WOW64%29+AppleWebKit%2F537.36+%28KHTML%2C+like+Gecko%29+Chrome%2F58.0.3029.110+Safari%2F537.36+SE+2.X+MetaSr+1.0
actionEnd 1536150451668
actionName startEval
actionTest 0
actionType 3
actionValue 272090
clientType 001_kgc
examType 001
ifEquipment web
isFromContinue false
skillIdCount 0
skillLevel 0
testType jineng
userSID B842B843AE317425D53D0C567A903EF7.exam-tomcat-node3.exam-tomcat-node3
userUID 272090
userUIP 1.180.18.157
//取每个array数组第一个为键:
actionBegin
actionClient
actionEnd
actionName
actionTest
actionType
actionValue
clientType
examType
ifEquipment
isFromContinue
skillIdCount
skillLevel
testType
userSID
userUID
userUIP
//合并所有字段:
event_time
url
actionBegin
actionClient
actionEnd
actionName
actionTest
actionType
actionValue
clientType
examType
ifEquipment
isFromContinue
skillIdCount
skillLevel
testType
userSID
userUID
userUIP
method
status
sip
user_uip
action_prepend
action_client
import java.util.Properties
import org.apache.commons.lang.StringUtils
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object DataClear {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().master("local[*]")
.appName("DataClear").getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
//加载数据
val lineRDD: RDD[String] = sc.textFile("in/project/test.log")
//按照制表符切分,过滤掉字段数量不为8个的,并给每一列自定义列名
val RowRDD: RDD[Row] = lineRDD.map(x => x.split("\t")).filter(x => x.length == 8).map(x => Row(x(0), x(1).trim
, x(2).trim, x(3).trim, x(4).trim, x(5).trim, x(6).trim, x(7).trim))
val schema = StructType(
Array(
StructField("event_time", StringType),
StructField("url", StringType),
StructField("method", StringType),
StructField("status", StringType),
StructField("sip", StringType),
StructField("user_uip", StringType),
StructField("action_prepend", StringType),
StructField("action_client", StringType)
)
)
val orgDF: DataFrame = spark.createDataFrame(RowRDD,schema)
// orgDF.printSchema()
// orgDF.show()
//按照第一列和第二列对数据进行去重 过滤掉状态码非200 过滤掉event_time为空的数据
val ds1: Dataset[Row] = orgDF
.dropDuplicates("event_time", "url")
.filter(x => x(3) == "200") //Row,一行进来,找到下标为3的这一列等于200的留下了
// .filter(x=>x(0).equals("")==false) //和下方操作等价
.filter(x => StringUtils.isNotEmpty(x(0).toString))
//将url按照”&”以及”=”切割
val detailDF: DataFrame = ds1.map(row => {
val strings: Array[String] = row.getAs[String]("url").split("\\?")//Row类型,一行进来找到其中url这一列对应的值切割成数组。
var map: Map[String, String] = Map("params" -> "null")
if (strings.length == 2) {
// strings(1).split("&").toString.split("=") //数组toString为一个地址,再按=切割,filter判断长度都不为2所以为空
// .filter(_.length == 2).map(x => (x(0), x(1))).toMap
val str: Array[String] = strings(1).split("&")
map = str.map(x => x.split("=")) //调用array数组的map方法,改变类型和数值,不要跟spark算子弄混了
.filter(x => x.length == 2).map(x => (x(0), x(1))).toMap //把数组的每一个元素即二元组转化成Map键值对
}
(row.getAs[String]("event_time"),
map.getOrElse("actionBegin", ""),
map.getOrElse("actionClient", ""),
map.getOrElse("actionEnd", ""),
map.getOrElse("actionName", ""),
map.getOrElse("actionTest", ""),
map.getOrElse("actionType", ""),
map.getOrElse("actionValue", ""),
map.getOrElse("clientType", ""),
map.getOrElse("examType", ""),
map.getOrElse("ifEquipment", ""),
map.getOrElse("isFromContinue", ""),
map.getOrElse("testType", ""),
map.getOrElse("userSID", ""),
map.getOrElse("userUID", ""),
map.getOrElse("userUIP", ""),
row.getAs[String]("method"),
row.getAs[String]("status"),
row.getAs[String]("sip"),
row.getAs[String]("user_uip"),
row.getAs[String]("action_prepend"),
row.getAs[String]("action_client"))
}).toDF(
"event_time",
"actionBegin",
"actionClient",
"actionEnd",
"actionName",
"actionTest",
"actionType",
"actionValue",
"clientType",
"examType",
"ifEquipment",
"isFromContinue",
"testType",
"userSID",
"userUID",
"userUIP",
"method",
"status",
"sip",
"user_uip",
"action_prepend",
"action_client"
)
detailDF.show(2,false)
//将数据写入mysql表中
val url="jdbc:mysql://192.168.198.201:3306/test"
val prop=new Properties()
prop.setProperty("user","root")
prop.setProperty("password","ok")
prop.setProperty("driver","com.mysql.jdbc.Driver")
detailDF.write.mode("overwrite").jdbc(url,"detailDF",prop)
orgDF.write.mode("overwrite").jdbc(url,"orgDF",prop)
}
}
计算用户的次日留存率
计算用户的次周留存率
package project
import java.text.SimpleDateFormat
import java.util.Properties
import org.apache.spark.SparkContext
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object UserAnalysis {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().appName("useranalysis").master("local[*]").getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
//从mysql中读取数据
val url="jdbc:mysql://192.168.198.201:3306/test"
val user="root"
val password="ok"
val driver="com.mysql.jdbc.Driver"
val prop=new Properties()
prop.setProperty("user",user)
prop.setProperty("password",password)
prop.setProperty("driver",driver)
val detailDF: DataFrame = spark.read.jdbc(url,"detailDF",prop)
// detailDF.printSchema()
// detailDF.show()
//定义一个udf函数可以将时间切割成年月日后转化为时间戳,以方便计算
val TimeFun: UserDefinedFunction = spark.udf.register("time", (x: String) => {
val time: Long = new SimpleDateFormat("yyyy-MM-dd").parse(x.toString.substring(0,10)).getTime
time
})
//过滤出注册用户
val registDS: Dataset[Row] = detailDF
.filter(detailDF("actionName")==="Registered")
.withColumnRenamed("event_time","regist_time")
.select("userUID","regist_time")
.withColumnRenamed("userUID","registUID")
//过滤出登录用户
val signDS: Dataset[Row] = detailDF
.filter("actionName='Signin'")
.withColumnRenamed("event_time","sign_time")
.select("userUID","sign_time")
.withColumnRenamed("userUID","signUID")
//调用udf函数并过滤掉重复数据
val registDS1: Dataset[Row] = registDS.select(registDS("registUID"),TimeFun(registDS("regist_time")).as("regist_time")).distinct()
val signDS1: Dataset[Row] = signDS.select(signDS("signUID"),TimeFun(signDS("sign_time")).as("sign_time")).distinct()
//注册用户与登录用户以条件为UID关联,求出交集
val joinDF: DataFrame = registDS1.join(signDS1,registDS1("registUID")===signDS1("signUID"))//spark中如果有空值,count会报错,所以不能用left
// joinDF.show(3,false)
println("次日留存率")
//过滤出次日留存数据并根据时间分组求出每日注册的次日登录数
val daysignDF: DataFrame = joinDF.filter(joinDF("sign_time") - joinDF("regist_time") === 86400000)
.groupBy("sign_time") //这里的分组条件也可为regist_time,因为我上面已经以条件过滤好了,所以登录时间指向了注册时间
//我如果按照注册时间分组其实统计的还是对应的次日的登录数。并且这样在下方关联求joinCountDF时关联条件直接为注册时间就可以了。
.count().withColumnRenamed("count","sign_count")
//注册用户以时间分组,求出每日的注册数
val dayregistDF: DataFrame = registDS1.groupBy("regist_time").count().withColumnRenamed("count","regist_count")
//以时间相差一天为条件关联上面两DF
val joinCountDF: DataFrame = dayregistDF.join(daysignDF,daysignDF("sign_time")-dayregistDF("regist_time")===86400000)
//求出次日留存率
val dayKeepDF: DataFrame = joinCountDF.map(x => (x.getAs[Long]("regist_time"),
x.getAs[Long]("regist_count"),
x(3).toString.toLong,
x(3).toString.toDouble / x(1).toString.toDouble
)
).toDF("regist_time", "regist_count", "sign_count", "oneDaykeep")
dayKeepDF.show()
println("次周留存率")
//过滤出次日留存数据并根据时间分组求出每日注册的次周登录数
val weeksignDF: DataFrame = joinDF.filter(joinDF("sign_time") - joinDF("regist_time") === 86400000*7)
.groupBy("sign_time") //这里的分组条件也可为regist_time,因为我上面已经以条件过滤好了,所以登录时间指向了注册时间
//我如果按照注册时间分组其实统计的还是对应的次日的登录数。并且这样在下方关联求joinCountDF时关联条件直接为注册时间就可以了。
.count().withColumnRenamed("count","sign_count")
//注册用户以时间分组,求出每日的注册数
val dayregistDF1: DataFrame = registDS1.groupBy("regist_time").count().withColumnRenamed("count","regist_count")
//以时间相差七天为条件关联上面两DF
val joinCountDF1: DataFrame = dayregistDF1.join(daysignDF,daysignDF("sign_time")-dayregistDF("regist_time")===86400000*7)
//求出次周留存率
val weekKeepDF: DataFrame = joinCountDF1.map(x => (x.getAs[Long]("regist_time"),
x.getAs[Long]("regist_count"),
x(3).toString.toLong,
x(3).toString.toDouble / x(1).toString.toDouble
)
).toDF("regist_time", "regist_count", "sign_count", "weekkeep")
weekKeepDF.show()
//结果写入数据库
dayKeepDF.write.mode("append").jdbc(url,"dayKeepDF",prop)
weekKeepDF.write.mode("append").jdbc(url,"weekKeepDF",prop)
}
}
/*
次日留存率
+-------------+------------+----------+-----------------+
| regist_time|regist_count|sign_count| oneDaykeep|
+-------------+------------+----------+-----------------+
|1535990400000| 381| 355|0.931758530183727|
+-------------+------------+----------+-----------------+
次周留存率
+-----------+------------+----------+--------+
|regist_time|regist_count|sign_count|weekkeep|
+-----------+------------+----------+--------+
+-----------+------------+----------+--------+
println("统计每天的活跃用户数")
//detailDF.show(3,false)
val splitTime: UserDefinedFunction = spark.udf.register("splitTime", (x: String) => {
x.substring(0, 10)
})
//第一种:dropDuplicates
val activeDF: DataFrame = detailDF
.filter("actionName in ('StartLearn','BuyCourse')")
// .filter(detailDF("actionName").isin("StartLearn","BuyCourse"))
// .filter($"actionName".isin("StartLearn","BuyCourse"))
.select($"userUID", splitTime(detailDF("event_time")).as("active_time"), $"actionName")
.dropDuplicates("userUID", "active_time")
.groupBy("active_time")
.count()
activeDF.show()
//第二种方法:distinct
detailDF
.filter($"actionName" === "StartLearn" || $"actionName" === "BuyCourse")
.map(x => {(x.getAs("userUID").toString, x.getAs("event_time").toString.substring(0, 10))})
.withColumnRenamed("_2", "date")
.distinct()
.groupBy("date")
.count()
.orderBy("date")
.show()
//写入mysql库
activeDF.write.mode("append").jdbc(url,"activeDF",prop)
/*
+-----------+-----+
|active_time|count|
+-----------+-----+
| 2018-09-04| 275|
| 2018-09-05| 255|
+-----------+-----+
+----------+-----+
| date|count|
+----------+-----+
|2018-09-04| 275|
|2018-09-05| 255|
+----------+-----+
//需要分析的数据
// 1593136280858|{"cm":{"ln":"-55.0","sv":"V2.9.6","os":"8.0.4","g":"[email protected]","mid":"489","nw":"3G","l":"es","vc":"4","hw":"640*960","ar":"MX","uid":"489","t":"1593123253541","la":"5.2","md":"sumsung-18","vn":"1.3.4","ba":"Sumsung","sr":"I"},"ap":"app","et":[{"ett":"1593050051366","en":"loading","kv":{"extend2":"","loading_time":"14","action":"3","extend1":"","type":"2","type1":"201","loading_way":"1"}},{"ett":"1593108791764","en":"ad","kv":{"activityId":"1","displayMills":"78522","entry":"1","action":"1","contentType":"0"}},{"ett":"1593111271266","en":"notification","kv":{"ap_time":"1593097087883","action":"1","type":"1","content":""}},{"ett":"1593066033562","en":"active_background","kv":{"active_source":"3"}},{"ett":"1593135644347","en":"comment","kv":{"p_comment_id":1,"addtime":"1593097573725","praise_count":973,"other_id":5,"comment_id":9,"reply_count":40,"userid":7,"content":"辑赤蹲慰鸽抿肘捎"}}]}
// 1593136280858|{"cm":{"ln":"-114.9","sv":"V2.7.8","os":"8.0.4","g":"[email protected]","mid":"490","nw":"3G","l":"pt","vc":"8","hw":"640*1136","ar":"MX","uid":"490","t":"1593121224789","la":"-44.4","md":"Huawei-8","vn":"1.0.1","ba":"Huawei","sr":"O"},"ap":"app","et":[{"ett":"1593063223807","en":"loading","kv":{"extend2":"","loading_time":"0","action":"3","extend1":"","type":"1","type1":"102","loading_way":"1"}},{"ett":"1593095105466","en":"ad","kv":{"activityId":"1","displayMills":"1966","entry":"3","action":"2","contentType":"0"}},{"ett":"1593051718208","en":"notification","kv":{"ap_time":"1593095336265","action":"2","type":"3","content":""}},{"ett":"1593100021275","en":"comment","kv":{"p_comment_id":4,"addtime":"1593098946009","praise_count":220,"other_id":4,"comment_id":9,"reply_count":151,"userid":4,"content":"抄应螟皮釉倔掉汉蛋蕾街羡晶"}},{"ett":"1593105344120","en":"praise","kv":{"target_id":9,"id":7,"type":1,"add_time":"1593098545976","userid":8}}]}
//读取json文件
val fileRDD=sc.textFile("hdfs://192.168.198.201:9000/zhu/op.log")
//将文件按|切割,并转化成二元组
var jsonStrRDD=fileRDD.map(x=>x.split('|')).map(x=>(x(0),x(1))) //因为|是字符,所以用单引号。双引号是字符串
//将上方二元组的第一位加上名称添加到第二位的末尾
val jsonRDD=jsonStrRDD.map(x=>{var jsonStr=x._2;jsonStr=jsonStr.substring(0,jsonStr.length-1);jsonStr+",\"id\":\""+x._1+"\"}"})
//(id加在最前:)
//val jsonFirstRDD=jsonStrRDD.map(x=>{var jsonStr=x._2;jsonStr=jsonStr.substring(1,jsonStr.length);"{\"id\":\""+x._1+"\","+jsonStr})
//导入所需包
import spark.implicits._
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
//将RDD转成DF
val jsonDF=jsonRDD.toDF
//使用get_json_object将json解析成字段,使用get_json_object是因为某一字段的值是json形式kv键值对,而如果是单纯的值就可以直接$"字段.子字段"表示。
val jsonDF2=jsonDF.select(get_json_object($"value","$.cm").alias("cm"),get_json_object($"value","$.ap").alias("ap"),get_json_object($"value","$.et").alias("et"),get_json_object($"value","$.id").alias("id"))
//将字段cm中的字段再次解析字段
val jsonDF3=jsonDF2.select($"id",$"ap",get_json_object($"cm","$.ln").alias("ln"),get_json_object($"cm","$.sv").alias("sv"),get_json_object($"cm","$.os").alias("os"),get_json_object($"cm","$.g").alias("g"),get_json_object($"cm","$.mid").alias("mid"),get_json_object($"cm","$.nw").alias("nw"),get_json_object($"cm","$.l").alias("l"),get_json_object($"cm","$.vc").alias("vc"),get_json_object($"cm","$.hw").alias("hw"),get_json_object($"cm","$.ar").alias("ar"),get_json_object($"cm","$.uid").alias("uid"),get_json_object($"cm","$.t").alias("t"),get_json_object($"cm","$.la").alias("la"),get_json_object($"cm","$.md").alias("md"),get_json_object($"cm","$.vn").alias("vn"),get_json_object($"cm","$.ba").alias("ba"),get_json_object($"cm","$.sr").alias("sr"),$"et")
//一个数组里有多个类似的json串,使用from_json将et中的数据解析,
val jsonDF4=jsonDF3.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
from_json($"et",ArrayType(StructType(StructField("ett",StringType)::StructField("en",StringType)::StructField("kv",StringType)::Nil))).alias("event"))
//二维数组的话使用explode将event中多个一维数组转成多行
val jsonDF5=jsonDF4.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
explode($"event").alias("event"))
//将event中的ett,en,kv拆成3列
val jsonDF6=jsonDF5.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",$"event.ett",$"event.en",$"event.kv")
//按字段en中的每一种状态不同切割kv
val loadDF=jsonDF6.filter("en='loading'").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.extend2").alias("extend2"),get_json_object($"kv","$.loading_time").alias("loading_time"),get_json_object($"kv","$.action").alias("action"),get_json_object($"kv","$.extend1").alias("extend1"),
get_json_object($"kv","$.type").alias("type"),get_json_object($"kv","$.type1").alias("type1"),get_json_object($"kv","$.loading_way").alias("loading_way"))
val adDF=jsonDF6.filter($"en"==="ad").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.activityId").alias("activityId"),get_json_object($"kv","$.displayMills").alias("displayMills"),get_json_object($"kv","$.entry").alias("entry"),get_json_object($"kv","$.action").alias("action"),
get_json_object($"kv","$.contentType").alias("contentType"))
val notificationDF=jsonDF6.filter(jsonDF6("en")==="notification").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.ap_time").alias("ap_time"),get_json_object($"kv","$.action").alias("action"),get_json_object($"kv","$.type").alias("type"),get_json_object($"kv","$.content").alias("content"))
val activeDF=jsonDF6.filter(jsonDF6("en")==="active_background").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.active_source").alias("active_source"))
val commentDF=jsonDF6.filter(jsonDF6("en")==="comment").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.p_comment_id").alias("p_comment_id"),get_json_object($"kv","$.addtime").alias("addtime"),get_json_object($"kv","$.praise_count").alias("praise_count"),get_json_object($"kv","$.other_id").alias("other_id"),
get_json_object($"kv","$.comment_id").alias("comment_id"),get_json_object($"kv","$.reply_count").alias("reply_count"),get_json_object($"kv","$.userid").alias("userid"),
get_json_object($"kv","$.content").alias("content"))
val praiseDF=jsonDF6.filter(jsonDF6("en")==="praise").select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"l",$"vc",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"ett",$"en",get_json_object($"kv","$.target_id").alias("target_id"),get_json_object($"kv","$.id").alias("id"),get_json_object($"kv","$.type").alias("type"),get_json_object($"kv","$.add_time").alias("add_time"),
get_json_object($"kv","$.userid").alias("userid"))
//打印最终结果的结构和数据
loadDF.printSchema
loadDF.show(false)
adDF.printSchema
adDF.show(false)
notificationDF.printSchema
notificationDF.show(false)
activeDF.printSchema
activeDF.show(false)
commentDF.printSchema
commentDF.show(false)
praiseDF.printSchema
praiseDF.show(false)
//将最终结果集保存至hive
//首先注册上面DF为临时视图
loadDF.createOrReplaceTempView("loadDF")
adDF.createOrReplaceTempView("adDF")
notificationDF.createOrReplaceTempView("notificationDF")
activeDF.createOrReplaceTempView("activeDF")
commentDF.createOrReplaceTempView("commentDF")
praiseDF.createOrReplaceTempView("praiseDF")
//然后创建库并切换库
spark.sql("create database if not exists kb09")
spark.sql("use kb09")
//最后写入到hive
spark.sql("create table if not exists load_DF as select * from loadDF")
spark.sql("create table if not exists ad_DF as select * from adDF")
spark.sql("create table if not exists notification_DF as select * from notificationDF")
spark.sql("create table if not exists active_DF as select * from activeDF")
spark.sql("create table if not exists comment_DF as select * from commentDF")
spark.sql("create table if not exists praise_DF as select * from praiseDF")
nohup hive --service metastore &
开启hive的元数据库,即RunJar服务。
org.apache.spark
spark-hive_2.11
2.1.1
package project
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
object jsonDemo {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().appName("json").master("local[*]")
.config("hive.metastore.uris", "thrift://192.168.198.201:9083")
.enableHiveSupport()
.getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._ //toDF
import org.apache.spark.sql._
import org.apache.spark.sql.types._ //new StructType..
import org.apache.spark.sql.functions._ //from_json,get_json_object...
val fileRDD: RDD[String] = sc.textFile("in/project/op.log")
val jsonRDD: RDD[String] = fileRDD.map(x => x.split('|')).map(x =>(x(0),x(1)))
.map(x => {
x._2.substring(0, x._2.length - 1) + ",\"id\":\"" + x._1 + "\"}"
})
val jsonDF: DataFrame = jsonRDD.toDF()
// jsonDF.printSchema()
// jsonDF.show(false)
//添加结构
val ett=new StructType()
.add($"ett".string)
.add($"en".string)
.add($"kv".string)
val common=new StructType()
.add($"ln".string).add($"sv".string).add($"os".string).add($"g".string).add($"mid".string).add($"nw".string)
.add($"hw".string).add($"ar".string).add($"uid".string).add($"t".string).add($"la".string).add($"md".string)
.add($"vn".string).add($"ba".string).add($"sr".string)
val schema=new StructType()
.add($"cm".struct(common))
.add($"ap".string)
.add($"et".array(ett))
.add($"id".string)
val frame: Dataset[Row] = jsonDF.select(from_json($"value",schema).alias("values"))
// frame.printSchema()
// frame.show(false)
val frame2: DataFrame = frame.select(
$"values.id".alias("id"),$"values.ap".alias("ap"),$"values.cm.ln".alias("ln"),$"values.cm.sv".alias("sv"),
$"values.cm.os".alias("os"),$"values.cm.g".alias("g"),$"values.cm.mid".alias("mid"),$"values.cm.nw".alias("nw"),
$"values.cm.hw".alias("hw"),$"values.cm.ar".alias("ar"),$"values.cm.uid".alias("uid"),$"values.cm.t".alias("t"),
$"values.cm.la".alias("la"),$"values.cm.md".alias("md"),$"values.cm.vn".alias("vn"),$"values.cm.ba".alias("ba"),$"values.cm.sr".alias("sr"),
explode($"values.et").alias("event"))
// frame2.printSchema()
// frame2.show(false)
val frame3: DataFrame = frame2.select(
$"id",$"ap",$"ln",$"sv",$"os", $"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",$"sr",
$"event.ett",$"event.en",$"event.kv"
)
val loadingDF: DataFrame = frame3.where($"en" === "loading")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.extend2").alias("extend2"),
get_json_object($"kv", "$.loading_time").alias("loading_time"),
get_json_object($"kv", "$.action").alias("action"),
get_json_object($"kv", "$.extend1").alias("extend1"),
get_json_object($"kv", "$.type").alias("type"),
get_json_object($"kv", "$.loading_way").alias("loading_way")
)
val adDF: DataFrame = frame3.where($"en" === "ad")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.activityId").alias("activityId"),
get_json_object($"kv", "$.displayMills").alias("displayMills"),
get_json_object($"kv", "$.entry").alias("entry"),
get_json_object($"kv", "$.action").alias("action"),
get_json_object($"kv", "$.contentType").alias("contentType")
)
val notificationDF: DataFrame = frame3.where($"en" === "notification")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.ap_time").alias("ap_time"),
get_json_object($"kv", "$.action").alias("action"),
get_json_object($"kv", "$.type").alias("type"),
get_json_object($"kv", "$.content").alias("content")
)
val activeBackgroundDF: DataFrame = frame3.where($"en" === "active_background")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.active_source").alias("active_source")
)
val commentDF: DataFrame = frame3.where($"en" === "comment")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.p_comment_id").alias("p_comment_id"),
get_json_object($"kv", "$.addtime").alias("addtime"),
get_json_object($"kv", "$.praise_count").alias("praise_count"),
get_json_object($"kv", "$.other_id").alias("other_id"),
get_json_object($"kv", "$.comment_id").alias("comment_id"),
get_json_object($"kv", "$.reply_count").alias("reply_count"),
get_json_object($"kv", "$.userid").alias("userid"),
get_json_object($"kv", "$.content").alias("content")
)
val praiseDF: DataFrame = frame3.where($"en" === "praise")
.select($"id",$"ap",$"ln",$"sv",$"os",$"g",$"mid",$"nw",$"hw",$"ar",$"uid",$"t",$"la",$"md",$"vn",$"ba",
$"sr",$"ett",$"en",
get_json_object($"kv", "$.target_id").alias("target_id"),
get_json_object($"kv", "$.id").alias("pid"),
get_json_object($"kv", "$.type").alias("type"),
get_json_object($"kv", "$.add_time").alias("add_time"),
get_json_object($"kv", "$.userid").alias("userid")
)
loadingDF.show(false)
adDF.show(false)
notificationDF.show(false)
activeBackgroundDF.show(false)
commentDF.show(false)
praiseDF.show(false)
//首先注册上面DF为临时视图
loadingDF.createOrReplaceTempView("loadingDF")
adDF.createOrReplaceTempView("adDF")
notificationDF.createOrReplaceTempView("notificationDF")
activeBackgroundDF.createOrReplaceTempView("activeDF")
commentDF.createOrReplaceTempView("commentDF")
praiseDF.createOrReplaceTempView("praiseDF")
//创库设计权限问题,如未解决IDEA中创库会是个文件夹没有.db后缀。所以建议创库用虚拟机提前创建好。
//spark.sql("create database if not exists kb09")
spark.sql("use kb09")
//最后写入到hive
spark.sql("create table if not exists load_DF as select * from loadingDF")
spark.sql("create table if not exists ad_DF as select * from adDF")
spark.sql("create table if not exists notification_DF as select * from notificationDF")
spark.sql("create table if not exists active_DF as select * from activeDF")
spark.sql("create table if not exists comment_DF as select * from commentDF")
spark.sql("create table if not exists praise_DF as select * from praiseDF")
}
}