代码随想录算法训练营第23期day59|503.下一个更大元素II、42. 接雨水

 一、503.下一个更大元素II

力扣题目链接

可以不扩充nums,在遍历的过程中模拟走两边nums

class Solution {
public:
    vector nextGreaterElements(vector& nums) {
        vector result(nums.size(), -1);
        if (nums.size() == 0) return result;
        stack st;
        st.push(0);
        for (int i = 1; i < nums.size() * 2; i++) { 
            // 模拟遍历两边nums,注意一下都是用i % nums.size()来操作
            if (nums[i % nums.size()] < nums[st.top()]) st.push(i % nums.size());
            else if (nums[i % nums.size()] == nums[st.top()]) st.push(i % nums.size()); 
            else {
                while (!st.empty() && nums[i % nums.size()] > nums[st.top()]) {
                    result[st.top()] = nums[i % nums.size()];
                    st.pop();
                }
                st.push(i % nums.size());
            }
        }
        return result;
    }
};

二、42. 接雨水

力扣题目链接

1)双指针法

把每一个位置的左边最高高度记录在一个数组上(maxLeft),右边最高高度记录在一个数组上(maxRight),避免了重复计算。

当前位置,左边的最高高度是前一个位置的左边最高高度和本高度的最大值。

即从左向右遍历:maxLeft[i] = max(height[i], maxLeft[i - 1]);

从右向左遍历:maxRight[i] = max(height[i], maxRight[i + 1]);

class Solution {
public:
    int trap(vector& height) {
        if (height.size() <= 2) return 0;
        vector maxLeft(height.size(), 0);
        vector maxRight(height.size(), 0);
        int size = maxRight.size();

        // 记录每个柱子左边柱子最大高度
        maxLeft[0] = height[0];
        for (int i = 1; i < size; i++) {
            maxLeft[i] = max(height[i], maxLeft[i - 1]);
        }
        // 记录每个柱子右边柱子最大高度
        maxRight[size - 1] = height[size - 1];
        for (int i = size - 2; i >= 0; i--) {
            maxRight[i] = max(height[i], maxRight[i + 1]);
        }
        // 求和
        int sum = 0;
        for (int i = 0; i < size; i++) {
            int count = min(maxLeft[i], maxRight[i]) - height[i];
            if (count > 0) sum += count;
        }
        return sum;
    }
};

2)单调栈解法 

class Solution {
public:
    int trap(vector& height) {
        if (height.size() <= 2) return 0; // 可以不加
        stack st; // 存着下标,计算的时候用下标对应的柱子高度
        st.push(0);
        int sum = 0;
        for (int i = 1; i < height.size(); i++) {
            if (height[i] < height[st.top()]) {     // 情况一
                st.push(i);
            } if (height[i] == height[st.top()]) {  // 情况二
                st.pop(); // 其实这一句可以不加,效果是一样的,但处理相同的情况的思路却变了。
                st.push(i);
            } else {                                // 情况三
                while (!st.empty() && height[i] > height[st.top()]) { // 注意这里是while
                    int mid = st.top();
                    st.pop();
                    if (!st.empty()) {
                        int h = min(height[st.top()], height[i]) - height[mid];
                        int w = i - st.top() - 1; // 注意减一,只求中间宽度
                        sum += h * w;
                    }
                }
                st.push(i);
            }
        }
        return sum;
    }
};

你可能感兴趣的:(代码随想录二刷,算法,leetcode,数据结构)