【每日一题】2304. 网格中的最小路径代价-2023.11.22

题目:

2304. 网格中的最小路径代价

给你一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0 到 m * n - 1 的不同整数组成。你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0)(x + 1, 1), ..., (x + 1, n - 1) 中的任何一个单元格。注意: 在最后一行中的单元格不能触发移动。

每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost 表示,该数组大小为 (m * n) x n ,其中 moveCost[i][j] 是从值为 i 的单元格移动到下一行第 j 列单元格的代价。从 grid 最后一行的单元格移动的代价可以忽略。

grid 一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价

示例 1:

【每日一题】2304. 网格中的最小路径代价-2023.11.22_第1张图片

输入:grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
输出:17
解释:最小代价的路径是 5 -> 0 -> 1 。
- 路径途经单元格值之和 5 + 0 + 1 = 6 。
- 从 5 移动到 0 的代价为 3 。
- 从 0 移动到 1 的代价为 8 。
路径总代价为 6 + 3 + 8 = 17 。

示例 2:

输入:grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
输出:6
解释:
最小代价的路径是 2 -> 3 。 
- 路径途经单元格值之和 2 + 3 = 5 。 
- 从 2 移动到 3 的代价为 1 。 
路径总代价为 5 + 1 = 6 。

提示:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 50
  • grid 由从 0 到 m * n - 1 的不同整数组成
  • moveCost.length == m * n
  • moveCost[i].length == n
  • 1 <= moveCost[i][j] <= 100

解答:

【每日一题】2304. 网格中的最小路径代价-2023.11.22_第2张图片

【每日一题】2304. 网格中的最小路径代价-2023.11.22_第3张图片

代码:

class Solution {
    public int minPathCost(int[][] grid, int[][] moveCost) {
        int m=grid.length,n=grid[0].length;
        int[][] dp=new int[m][n];
        for(int j=0;j

结果:

【每日一题】2304. 网格中的最小路径代价-2023.11.22_第4张图片

你可能感兴趣的:(leetcode刷题笔记,算法,leetcode,数据结构,动态规划)