微服务分布式系统中 必须知道的CAP 理论

CAP定理: 指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可同时获得

  • 一致性(C):所有节点都可以访问到最新的数据

  • 可用性(A):每个请求都是可以得到响应的,不管请求是成功还是失败

  • 分区容错性(P):除了全部整体网络故障,其他故障都不能导致整个系统不可用

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡

微服务分布式系统中 必须知道的CAP 理论_第1张图片

CA: 如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但放弃P的同时也就意味着放弃了系统的扩展性,也就是分布式节点受限,没办法部署子节点,这是违背分布式系统设计的初衷的

CP: 如果不要求A(可用),每个请求都需要在服务器之间保持强一致,而P(分区)会导致同步时间无限延长(也就是等待数据同步完才能正常访问服务),一旦发生网络故障或者消息丢失等情况,就要牺牲用户的体验,等待所有数据全部一致了之后再让用户访问系统

AP:要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。

你可能感兴趣的:(#,SpringCloud,微服务,分布式,spring,cloud)