- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- 科技云报到:科技普惠潮流渐起,“开源”将带我们走向何方?
科技云报道
科技开源
科技云报到原创。开源决定软件未来,已成为全球技术和产业创新的主导模式之一。“开源”思想的诞生,可以说是计算机发展史中极具理想主义和浪漫主义色彩的一页,是科技自由与技术极客思想的延伸。数字化浪潮奔涌,从软件开发的底层逻辑到技术创新的前沿探索,从产业结构的优化升级到生态体系的繁荣构建,开源不仅作为数字经济发展的关键驱动力,更在全球范围内搭建起了一个充满活力与创新精神的产业生态框架。新的一年,开源又将带
- 整车排程系统的约束设计:从理论到实践的全面解析
架构默片
软件设计开发语言java系统架构
整车排程是汽车制造中最复杂的生产计划环节,涉及多维度约束的平衡与优化。以下是基于多年实战经验总结的五大核心约束体系:1.时间约束1.1生产周期约束设计要点:定义生产周期(从焊装到总装的完整流程)设置关键节点时间窗(如焊装≤3天,涂装≤2天,总装≤4天)一般制造型企业都是执行3+1或者5+1这样的制造计划周期安排生产的。具体含义是:企业会按照3天或5天的正常生产计划进行,然后安排1天的时间用于设备维
- Redis 主从复制的原理详解
海里真的有鱼
redis数据库缓存
引言Redis作为一种高性能的内存数据库,广泛应用于高并发、低延迟的场景中。然而,单机版的Redis存在一定的局限性,尤其是在高可用性和负载均衡方面。为了应对这些挑战,Redis提供了主从复制(Replication)机制,使得一个Redis实例(主节点)可以将数据同步到其他多个实例(从节点)。主从复制是Redis集群高可用架构的基础,它不仅提高了系统的可用性,还为读写分离、数据备份等场景提供了支
- AI芯片:科技变革的核心驱动力
乐得瑞_郑钊展13172458616
人工智能科技
近年来,人工智能(AI)的飞速发展对众多行业产生了深远影响,芯片领域也不例外。AI在芯片设计、制造及应用等方面带来了革新性的改变,成为推动芯片行业发展的关键力量。AI助力芯片设计效率飞升传统芯片设计极为复杂,涉及数十亿晶体管的布局与连接,需庞大工程师团队耗费数月至数年才能完成从架构到制造的全流程。不过,AI技术的出现正在扭转这一局面。AI能处理繁重重复任务,优化复杂芯片布局并设计专用芯片,大大提高
- AIGC遇上Stable Diffusion:当创意邂逅精准,绘梦成真之旅
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
AIGC遇上StableDiffusion:当创意邂逅精准,绘梦成真之旅AIGC:创意的魔杖,还是技术的魔法?基本概念与魔法起源作用说明:从想象到像素的跨越StableDiffusion实战演练:像素炼金术士的秘籍案例一:像素画师初体验案例二:风格迁移的魔法深入探索:多维度功能使用实战开发技巧与避坑指南技巧一:性能优化避坑:图像模糊或失真安全防范:避免生成有害内容结语:未来已来,梦想无界在这个数字
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- python学习 列表 字典 集合 面对对象编程 闭包 装饰器 函数式编程 作用域 异常处理
Scikit-learn
机器学习python算法python学习开发语言
SIGIA_4Ppython学习列表字典集合面对对象编程闭包装饰器函数式编程作用域异常处理本文连接简介SIGIA_4P网址a.课程OKRObjectivesandKeyResults即目标与关键成果法目标,Objectives:掌握AI领域的Python开发成果1KR1linux目录结构[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r864ykpN-16917885
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 中华人民共和国网络安全笔记
_DT9825
笔记
《中华人民共和国网络安全法》的考试要点总结一、基础信息1.立法时间-2016年11月7日通过,2017年6月1日起施行。2.立法目的-保障网络安全,维护网络空间主权、国家安全和社会公共利益,保护公民、法人合法权益。3.适用范围-在中国境内建设、运营、维护和使用网络,以及网络安全的监督管理。二、重点章节与核心内容第一章总则1.基本原则-网络安全与信息化发展并重,坚持积极利用、科学发展、依法管理、确保
- 云计算——AWS Solutions Architect – Associate(saa)6.CloudWatch
F——
云计算云计算aws学习服务器
AmazonCloudWatch是一种面向开发运营工程师、开发人员、站点可靠性工程师(SRE)和IT经理的监控和可观测性服务。CloudWatch为我们提供相关数据和切实见解,以监控应用程序、响应系统范围的性能变化、优化资源利用率,并在统一视图中查看运营状况。CloudWatch以日志、指标和事件的形式收集监控和运营数据,让我们能够在统一查看在AWS和本地服务器上运行的资源、应用程序和服务。我们可
- CSDN宣布C知道产品接入DeepSeek R1满血版大模型,文心一言、星火认知模型
周杰伦_Jay
大模型LLMs热点事件文心一言人工智能leetcode目标检测机器学习自然语言处理生成对抗网络
文章目录前言一、产品升级与模式革新二、技术整合与大模型应用三、深度思考模式的核心优势四、应用场景与用户受益五、未来发展与技术创新前言亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:
[email protected]一、产品升级与模式革新CSDN宣布C知道产品接入DeepSeek大模型。通过植入“深度思考模式”,全面升级AI
- NameError: name ‘xxx’ is not defined
一直幸运
Pythonpython
第一个练手小项目遇到N个NameError,技能熟练度蹭蹭往上涨,哈哈…转发一个网上的比较全的解决贴,共勉。原址:https://www.cnblogs.com/zyh19980816/p/11844659.html问题一:name‘name’isnotdefined“name"两端是双下划线”_",不是只有一个""。问题二:name‘messagebox’isnotdefined“”内为某个数据
- 前端面试题
阿芯爱编程
面试前端
以下是一些前端面试题:一、HTML/CSS部分请描述HTML的语义化标签的重要性,并列举一些常用的语义化标签。答案:重要性:对搜索引擎优化(SEO)有帮助,搜索引擎能够更好地理解页面结构,从而提高网站在搜索结果中的排名。提高代码的可读性和可维护性,使开发者更容易理解页面布局和功能逻辑。对于辅助技术(如屏幕阅读器)更友好,能够准确地向用户传达页面内容。常用语义化标签::定义页面或区域的头部内容,通常
- 一篇文章带你理解黑客、骇客、白客、红客的区别和作用
编程小亦
黑客PHPphpweb安全安全
遵循AI写法主编:hurrycry黑客(Hacker)黑客一词最早可以追溯到20世纪60年代的麻省理工学院(MIT)。当时,一群才华横溢的计算机爱好者,他们热衷于探索计算机系统的奥秘。这些人被称为黑客,他们最初的目的是为了更好地理解计算机的工作原理,通过编写程序来解决复杂的技术问题。他们以自己的技术能力为傲,并且有着强烈的好奇心和求知欲。例如,早期的黑客会尝试优化计算机的操作系统,或者找到新的方法
- 大规模GPU集群的进阶之路
卢旗
人工智能
大家好,我是卢旗。今天来聊聊GPU。GPU,全称GraphicProcessingUnit,即图形处理器。它的并行处理能力非常强大,能够同时处理多个任务和数据,因此被广泛用于图形渲染、视频处理、深度学习、科学计算等领域。研发团队在负责制定硬件选型策略并设计优化下一代大规模GPU集群的软硬件架构时,我们需要关注GPU技术的最新进展、重点研究问题以及潜在的技术突破。一、GPU在重点研究的问题算力提升与
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 深入了解单片机:原理、应用及发展趋势
xzzz2016
单片机
在当今数字化时代,单片机作为嵌入式系统中的关键组成部分,扮演着不可或缺的角色。本文将深入探讨单片机的原理、应用以及未来发展趋势,希望能够帮助读者更好地了解这一领域。一、单片机原理单片机是一种集成了处理器、存储器、输入输出接口和定时器等功能于一体的微型计算机系统。常见的单片机包括由8位或16位CPU构成的芯片,通过外部连接的电路可实现各种功能。单片机的工作原理是通过执行存储在其存储器中的程序来控制外
- 6种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、新雀优化算法NOA、鳑鲏鱼优化算法BFO、蜘蛛蜂优化算法SWO)求解机器人路径规划(提供MATLAB代码)
IT猿手
机器人路径规划优化算法无人机路径规划算法机器人matlab宽度优先开发语言人工智能前端
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- pip升级ValueError: Unable to find resource t64.exe in package pip._vendor.distlib报错解决办法
AI小鸭学院
livingbodypaddle安装与错误解析
pip升级报错解决办法pip升级频率很高,不升级经常会遇到这样哪样的异常。有一种异常,我相信你一定遇到,话不多说,上错误信息。1.错误现象(paddle2)D:\github\PGL>python.exe-mpipinstall--upgradepipLookinginindexes:https://pypi.tuna.tsinghua.edu.cn/simpleCollectingpipUsin
- Ubuntu 安装 docker 配置环境及其常用命令
自学AI的鲨鱼儿
#环境安装ubuntudockerdockercompose
Docker安装与配置指南本文介绍如何在Ubuntu系统上安装Docker,解决权限问题,配置DockerCompose,代理端口转发,容器内部代理问题等并进行相关的优化设置。参考官方文档:Docker官方安装指南注意:本教程的部分命令需ubuntu系统可科学上网一、安装Docker1.卸载旧版本在安装新版Docker之前,建议先卸载旧版本以避免潜在的冲突。执行以下命令卸载旧版本的Docker:s
- IM 即时通讯系统-06-聊一聊 IM 要如何保证扩展性?
后端java
IM系列聊一聊IM是什么?IM即时通讯系统概览聊一聊IM要如何设计?聊一聊IM要如何设计功能模块?聊一聊IM要如何进行架构设计?聊一聊IM要如何进行技术选型?聊一聊IM要如何保证安全性?聊一聊IM要如何保证扩展性?聊一聊IM要如何实现运维与监控?聊一聊IM要如何提升用户体验?聊一聊IM要如何进行测试与部署?聊一聊IM要如何编写文档+技术支持?聊一聊IM要如何打造差异化?聊一聊如何优化硬件聊一聊如何
- HarmonyOS Next轻量化模型的部署与优化
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中轻量化模型部署与优化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型部署概述与挑战(一)部署流程与重要性在HarmonyOSNext的应用开发中,将轻量化模型部署到设备上就像是为一艘船找
- 编程行业必备!12个热门AI工具帮你写代码~
人工智能
到今年,AI编程工具的发展已经非常成熟了,它们可以极大地提高开发效率,帮助程序员解决复杂问题,并优化代码质量。拒绝废话,今天给大家推荐12款AI编程工具!1悬镜安全灵脉AI开发安全卫士灵脉AI开发安全卫士是基于多模智能引擎的新一代静态代码安全扫描产品,通过自动化审查流程来定位潜在缺陷、提升审计效率和代码质量,并显著减少手动审查所需的时间和精力。该平台利用人工智能技术,提供逐行的代码反馈,建议改进和
- 学习疯狂JAVA讲义——学习基本类型
红鲤鱼与绿鲤鱼与哈士奇
学习java开发语言
笔记备忘,方便以后忘了查询(如有错误,敬请指点)★类型:↗基本类型Java的类型↘引用类型↗整形(byte、short、int、long)↗浮点型(float、double)★基本类型:→字符型(char)↘boolean型(boolean)★整型位(bit)要么是0、要么是1。字节(Byte)8个bit所谓整形,只能装整数(包括正整数和负整数)2^0→12^1→22^2→42^3→82^4→16
- 后端变现+AB测试双赢攻略,如何让收入不受影响?
大家好,我是阿联。在优化移动广告变现的过程中,我们常常遇到一个老问题:如何快速测试不同的广告配置,同时避免影响收入。尤其是对像MAX、AdMob这样的广告平台,虽然它们支持AB测试,但往往效果慢且灵活性差。尤其在获取结果时,不仅周期长,而且往往会有一定的收入损失。传统的AB测试需要一定的时间来收集数据和评估效果,但这对于需要快速迭代的广告变现优化来说显然不够高效。那么,有没有一种既能保持快速测试,
- 大模型应用层的创业挑战
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大模型应用层的创业挑战关键词:大模型、应用层、创业、挑战、算法、架构、数据、资源、合作、盈利模型1.背景介绍随着计算能力和数据量的指数级增长,大模型(LargeModels)已经成为人工智能领域的关键驱动因素。大模型的应用从语言模型扩展到图像、视频和音频领域,为各行各业带来了颠覆性的创新。然而,构建和部署大模型的成本高昂,对计算资源和数据的需求也日益增加。本文将探讨大模型应用层面的创业挑战,并提供
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多