5 决策树(python代码)

决策树(decision tree)是一种基本的分类与回归方法。学习时,利用训练数据根据损失函数最小化的原则建立决策树模型;预测时,对新的数据,利用决策树模型进行分类。包括特征选择、决策树的生成、决策树的剪枝。

例题5.1
算法步骤:
输入:训练数据集D和特征集A
输出:特征A对训练数据集D的信息增益g(D,A)
步骤:
(1)计算数据集D的经验熵H(D)


image.png

(2)计算特征A对数据集D的经验条件熵H(D|A)


image.png

(3)计算信息增益
image.png
import numpy as np
from math import log


# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
    return ent


# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent


# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent


# 最大信息增益
def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
        best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])

def create_data():
    datasets=[['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否']]
    labels=[u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    return datasets, labels

datasets, labels=create_data()
info_gain_train(np.array(datasets))

ID3算法
输入:训练数据集D,特征集A,阈值eta
输出:决策树T
步骤:
(1)若D中所有实例属于同一类Ck,则T为单结点树,并将类Ck作为该结点的类标记,返回T;
(2)若A=∅,则T为单结点树,并将D中实例最大的类Ck作为该结点的类标记,返回T;
(3)否则,计算A中各特征对D的信息增益,选择信息增益最大的特征Ag;
(4)如果Ag的信息增益小于阈值eta,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
(5)否则对Ag的每一可能值αi,依Ag=αi将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
(6)对第i个子结点,以Di为训练集,以A-Ag为特征集,递归调用步骤1~5,得到子树Ti,返回T。

import numpy as np
from math import log
import pandas as pd


class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {
            'label': self.label,
            'feature': self.feature,
            'tree': self.tree
        }

    def __repr__(self):
        # 自定义返回值
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)


class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    # 最大信息增益
    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])
        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True,
                        label=y_train.value_counts().sort_values(ascending=False).index[0])
        # 3,计算最大信息增益 Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]
        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(ascending=False).index[0]
            )
        # 5,构建Ag子集
        node_tree = Node(
            root=False, feature_name=max_feature_name, feature=max_feature
        )
        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)
            # 6 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)


def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
                ['青年', '否', '否', '好', '否'],
                ['青年', '是', '否', '好', '是'],
                ['青年', '是', '是', '一般', '是'],
                ['青年', '否', '否', '一般', '否'],
                ['中年', '否', '否', '一般', '否'],
                ['中年', '否', '否', '好', '否'],
                ['中年', '是', '是', '好', '是'],
                ['中年', '否', '是', '非常好', '是'],
                ['中年', '否', '是', '非常好', '是'],
                ['老年', '否', '是', '非常好', '是'],
                ['老年', '否', '是', '好', '是'],
                ['老年', '是', '否', '好', '是'],
                ['老年', '是', '否', '非常好', '是'],
                ['老年', '否', '否', '一般', '否']]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    return datasets, labels


datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)

print(dt.predict(['老年', '否', '否', '一般']))

你可能感兴趣的:(5 决策树(python代码))