Day77_Flink(三)Flink时间语义和水印

课程大纲

课程内容

学习效果

掌握目标

时间语义

EventTime

掌握

IngestionTime

掌握

ProcessingTime

掌握

水印

水印

掌握

一、时间语义

​    scala的集合分为了两类,一类是可变的集合(集合可以执行增删改查操作),另一类是不可变集合(集合元素在初始化的时候确定,后续只能进行查,有的可以进行修改,有的不可以)。二者可能名称一样,但是在不同的包下面,对应的包为:scala.collection.mutable和scala.collection.immutable。

​    scala默认使用的集合,或者默认导入的包是immutable。

​    说明:这里提到的可变或者不可变,指的是容器内部的内容,以及容器的长度可变或者不可变。

(一)、时间语义

在 Flink 的流式处理中,会涉及到时间的不同概念,如下图3-1所示:

Day77_Flink(三)Flink时间语义和水印_第1张图片

1、EventTime

Event Time指的是数据流中每个元素或者每个事件自带的时间属性,一般是事件发生的时间。由于事件从发生到进入Flink时间算子之间有很多环节,一个较早发生的事件因为延迟可能较晚到达,因此使用Event Time意味着事件到达有可能是乱序的。

使用Event Time时,最理想的情况下,我们可以一直等待所有的事件到达后再进行时间窗口的处理。假设一个时间窗口内的所有数据都已经到达,基于Event Time的流处理会得到正确且一致的结果:无论我们是将同一个程序部署在不同的计算环境还是在相同的环境下多次计算同一份数据,都能够得到同样的计算结果。我们根本不用担心乱序到达的问题。但这只是理想情况,现实中无法实现,因为我们既不知道究竟要等多长时间才能确认所有事件都已经到达,更不可能无限地一直等待下去。在实际应用中,当涉及到对事件按照时间窗口进行统计时,Flink会将窗口内的事件缓存下来,直到接收到一个Watermark,以确认不会有更晚数据的到达。Watermark意味着在一个时间窗口下,Flink会等待一个有限的时间,这在一定程度上降低了计算结果的绝对准确性,而且增加了系统的延迟。在流处理领域,比起其他几种时间语义,使用Event Time的好处是某个事件的时间是确定的,这样能够保证计算结果在一定程度上的可预测性。

一个基于Event Time的Flink程序中必须定义Event Time,以及如何生成Watermark。我们可以使用元素中自带的时间,也可以在元素到达Flink后人为给Event Time赋值。

使用Event Time的优势是结果的可预测性,缺点是缓存较大,增加了延迟,且调试和定位问题更复杂。

例如:点击网站上的某个链接的时间。

2、IngestionTime

Ingestion Time是事件到达Flink Souce的时间。从Source到下游各个算子中间可能有很多计算环节,任何一个算子的处理速度快慢可能影响到下游算子的Processing Time。而Ingestion Time定义的是数据流最早进入Flink的时间,因此不会被算子处理速度影响。

Ingestion Time通常是Event Time和Processing Time之间的一个折中方案。比起Event Time,Ingestion Time可以不需要设置复杂的Watermark,因此也不需要太多缓存,延迟较低。比起Processing Time,Ingestion Time的时间是Souce赋值的,一个事件在整个处理过程从头至尾都使用这个时间,而且后续算子不受前序算子处理速度的影响,计算结果相对准确一些,但计算成本稍高。

3、ProcessingTime

对于某个算子来说,Processing Time指算子使用当前机器的系统时钟来定义时间。在Processing Time的时间窗口场景下,无论事件什么时候发生,只要该事件在某个时间段达到了某个算子,就会被归结到该窗口下,不需要Watermark机制。对于一个程序在同一个计算环境来说,每个算子都有一定的耗时,同一个事件的Processing Time,第n个算子和第n+1个算子不同。如果一个程序在不同的集群和环境下执行时,限于软硬件因素,不同环境下前序算子处理速度不同,对于下游算子来说,事件的Processing Time也会不同,不同环境下时间窗口的计算结果会发生变化。因此,Processing Time在时间窗口下的计算会有不确定性。

Processing Time只依赖当前执行机器的系统时钟,不需要依赖Watermark,无需缓存。Processing Time是实现起来非常简单也是延迟最小的一种时间语义。

(二)、使用说明

在 Flink 的流式处理中,绝大部分的业务都会使用 eventTime,一般只在eventTime 无法使用时,才会被迫使用 ProcessingTime 或者 IngestionTime。

如果要使用 EventTime,那么需要引入 EventTime 的时间属性,引入方式如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给 env 创建的每一个 stream 追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

如果想用另外两种时间语义,需要替换为:TimeCharacteristic.ProcessingTime和TimeCharacteristic.IngestionTime。

二、Watermark水印

(一)、水印简介

1、水印产生背景

我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的。虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络延迟等原因,导致乱序的产生,特别是使用kafka的话,多个分区的数据无法保证有序。那么此时出现一个问题,一旦出现乱序,如果只根据 eventTime 决定 window 的运行,我们不能明确数据是否全部到位,又不能无限期的等下去,必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了。这个特别的机制,就是watermark。
Watermark 是 用 于 处 理 乱 序 事 件 的 , 而 正 确 的 处 理 乱 序 事 件 , 通 常 用 Watermark 机制结合 window 来实现。 数据流中的 Watermark 用于表示 timestamp 小于 Watermark 的数据,都已经 到达了,因此,window 的执行也是由 Watermark 触发的。 Watermark 可以理解成一个延迟触发机制,我们可以设置 Watermark 的延时 时 长 t, 每 次 系 统 会 校 验 已 经 到 达 的 数 据 中 最 大 的 maxEventTime, 然 后 认 定 eventTime 小于 maxEventTime - t 的所有数据都已经到达,如果有窗口的停止时间 等于 maxEventTime – t,那么这个窗口被触发执行。

Day77_Flink(三)Flink时间语义和水印_第2张图片

如图3-2中的 record 3 和 record 5 为乱序数据,record 4 为迟到数据

你可能感兴趣的:(#,flink,scala,大数据)