LM 算法用于解决非线性最小二乘问题
min x F ( x ) = 1 2 ∥ f ( x ) ∥ 2 2 (1) \min _x F(x)=\frac{1}{2}\|f(\boldsymbol{x})\|_2^2 \tag{1} xminF(x)=21∥f(x)∥22(1)
其中, f ( x ) f(\boldsymbol{x}) f(x) 是指各项的残差。
LM 算法有两种推导方式,即 阻尼法 和 置信域 法(见《十四讲》),这里用阻尼法进行推导。
(1)一阶泰勒展开近似
将 f ( x ) f(\boldsymbol{x}) f(x) 在 x n \boldsymbol{x_n} xn 处一阶泰勒展开(把 Δ x \Delta \boldsymbol{x} Δx 看做未知数),
f ( x n + Δ x ) ≈ f ( x n ) + J ( x n ) Δ x (2) f(\boldsymbol{x_n}+\Delta \boldsymbol{x}) \approx f(\boldsymbol{x_n})+\boldsymbol{J}\left(\boldsymbol{x}_n\right) \Delta \boldsymbol{x} \tag{2} f(xn+Δx)≈f(xn)+J(xn)Δx(2)
那么问题转化为,对于每次迭代,求解最优的 Δ x \Delta \boldsymbol{x} Δx。
Δ x ∗ = arg min Δ x 1 2 ∥ f ( x n ) + J n ( x n ) Δ x ∥ 2 (3) \Delta \boldsymbol{x}^*=\arg \min _{\Delta \boldsymbol{x}} \frac{1}{2}\left\|f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)+\boldsymbol{J}_{\boldsymbol{n}}\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \Delta \boldsymbol{x}\right\|^2 \tag{3} Δx∗=argΔxmin21∥f(xn)+Jn(xn)Δx∥2(3)
(2)加入阻尼项
Δ x ∗ = arg min Δ x M ( Δ x ) = 1 2 ∥ f ( x n ) + J n ( x n ) Δ x ∥ 2 + 1 2 μ Δ x T Δ x (4) \Delta \boldsymbol{x}^*=\arg \min _{\Delta \boldsymbol{x}} M(\Delta \boldsymbol{x})=\frac{1}{2}\left\|f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)+\boldsymbol{J}_{\boldsymbol{n}}\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \Delta \boldsymbol{x}\right\|^2+\frac{1}{2} \mu \Delta \boldsymbol{x}^T \Delta \boldsymbol{x} \tag{4} Δx∗=argΔxminM(Δx)=21∥f(xn)+Jn(xn)Δx∥2+21μΔxTΔx(4)
其中, μ \mu μ 为阻尼系数,阻尼项 1 2 μ Δ x T Δ x \frac{1}{2} \mu \Delta \boldsymbol{x}^T \Delta \boldsymbol{x} 21μΔxTΔx 可以看做是对于过大的 Δ x \Delta \boldsymbol{x} Δx 的惩罚。
(3)求极值
对 Δ x \Delta \boldsymbol{x} Δx 求导,并令其等于零,
J ( x n ) T f ( x n ) + J ( x n ) T J ( x n ) Δ x + μ Δ x = 0 (5) \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)+\boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \Delta \boldsymbol{x}+\mu \Delta \boldsymbol{x}=\mathbf{0} \tag{5} J(xn)Tf(xn)+J(xn)TJ(xn)Δx+μΔx=0(5)
得
Δ x ∗ = − ( J ( x n ) T J ( x n ) + μ I ) − 1 J ( x n ) T f ( x n ) (6) \Delta \boldsymbol{x}^*=-\left(\boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)+\mu \boldsymbol{I}\right)^{-1} \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T f\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \tag{6} Δx∗=−(J(xn)TJ(xn)+μI)−1J(xn)Tf(xn)(6)
令
J ( x n ) T J ( x n ) = H J ( x n ) T f ( x n ) = g \begin{aligned} \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right) &=\boldsymbol{H} \\ \boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)^T f\left(\boldsymbol{x}_{\boldsymbol{n}}\right) &=\boldsymbol{g} \end{aligned} J(xn)TJ(xn)J(xn)Tf(xn)=H=g
则式(6)可写为
Δ x ∗ = − ( H + μ I ) − 1 g (7) \Delta \boldsymbol{x}^*=-(\boldsymbol{H}+\mu \boldsymbol{I})^{-1} \boldsymbol{g} \tag{7} Δx∗=−(H+μI)−1g(7)
(4)阻尼系数 μ \mu μ 的调节
定义增益系数 ρ \rho ρ
ρ = f ( x + Δ x ) − f ( x ) J ( x ) T Δ x (8) \rho=\frac{f(\boldsymbol{x}+\boldsymbol{\Delta x})-f(\boldsymbol{x})}{\boldsymbol{J}(\boldsymbol{x})^T\Delta \boldsymbol{x}} \tag{8} ρ=J(x)TΔxf(x+Δx)−f(x)(8)
其中,分子是实际下降的值,分母是近似下降的值。若 ρ \rho ρ 接近于 1 ,则近似效果好;若 ρ \rho ρ 太小,则说明实际减小的值远小于近似减小的值,即近似效果较差,需缩小近似范围,即增大阻尼系数 μ \mu μ; 若 ρ \rho ρ 太大,则说明实际减小的值大于近似减小的值,则需放大近似范围,即减小 μ \mu μ。
两种调节方法:
if ρ < 0.25 μ : = μ ∗ 2 else if ρ > 0.75 μ : = μ / 3 \begin{aligned} \text { if } & \rho<0.25 \\ & \mu:=\mu * 2 \\ \text { else if } & \rho>0.75 \\ & \mu:=\mu / 3 \end{aligned} if else if ρ<0.25μ:=μ∗2ρ>0.75μ:=μ/3
也就是, ρ < 0.25 \rho<0.25 ρ<0.25 时增大阻尼系数; ρ > 0.75 \rho>0.75 ρ>0.75 时,减小阻尼系数。
或者:
i f ρ > 0 μ : = μ ∗ max { 1 3 , 1 − ( 2 ρ − 1 ) 3 } ; ν : = 2 e l s e μ : = μ ∗ ν ; ν : = 2 ∗ ν \begin{aligned} if \rho>0 \\ &\mu:=\mu * \max \left\{\frac{1}{3}, 1-(2 \rho-1)^3\right\} ; \quad \nu:=2\\ else\\ &\mu:=\mu * \nu ; \quad \nu:=2 * \nu \end{aligned} ifρ>0elseμ:=μ∗max{31,1−(2ρ−1)3};ν:=2μ:=μ∗ν;ν:=2∗ν
两种方法差别在于 ρ \rho ρ 的分母的计算(我的更快?)。
优化目标是待定系数,把他们看做 未知数,需要计算的 step 就是这些待定系数的 step。
(1)我的方法
/*********************************************************** *
* Time: 2022/11/3
* Author: xiaocong
* Function: LM 算法
*
* @ 解决的是最小二乘问题,也就是找到最优的系数使得残差最小
* @ obj = A * sin(Bx) + C * cos(D*x) - F
* A * sin(Bx) + C * cos(D*x) 是目标函数
* F 是实际值
* 目标是找到使 obj 最小的系数 A B C D
***********************************************************/
#include // 稠密矩阵
#include // 稀疏矩阵
#include
#include
using namespace std;
using namespace Eigen;
const double DERIV_STEP = 1e-5;
const int MAX_INTER = 100;
#define max(a, b) (((a)>(b))?(a):(b))
// 定义目标函数
double func(const VectorXd input, const VectorXd &output, const VectorXd ¶ms, int objIndex)
{
// obj = A * sin(Bx) + C * cos(D*x) - F
double x1 = params(0); // params 中存储的是系数
double x2 = params(1);
double x3 = params(2);
double x4 = params(3);
double t = input(objIndex); // input 中存储的是 x
double f = output(objIndex); // output 中存储的是实际值
return x1 * sin(x2 * t) + x3 * cos(x4 * t) - f; // 返回 objIndex 项的残差
}
// 计算残差矩阵
VectorXd objF(const VectorXd &input, const VectorXd &output, const VectorXd ¶ms)
{
VectorXd obj(input.rows()); // 存储所有残差,也就是残差矩阵
for (int i = 0; i < input.rows(); i++)
obj(i) = func(input, output, params, i);
return obj; // 返回残差矩阵
}
// 残差平方和
double Func(const VectorXd &obj)
{
return obj.squaredNorm() / 2.0;
}
// 求某个系数在某点的导数
double Deriv(const VectorXd &input, const VectorXd &output, int objIndex, const VectorXd ¶ms, int paraIndex)
{
VectorXd para1 = params;
VectorXd para2 = params;
para1(paraIndex) -= DERIV_STEP;
para2(paraIndex) += DERIV_STEP;
double obj1 = func(input, output, para1, objIndex);
double obj2 = func(input, output, para2, objIndex);
return (obj2 - obj1) / (2 * DERIV_STEP); // 该点处的导数,为求雅克比矩阵做准备
}
// 计算雅克比矩阵
/****************************
* 我们优化的是系数 params,把他们看做未知数,分别求导,得到雅克比矩阵
* 维度:(input.rows() x params.rows())
* [[df/dA df/dB df/dC df/dD] <--- x1
* [df/dA df/dB df/dC df/dD] <--- x2
* [.......................]
* [df/dA df/dB df/dC df/dD]] <--- xn
****************************/
MatrixXd Jacobian(const VectorXd &input, const VectorXd &output, const VectorXd ¶ms)
{
int rowNum = input.rows();
int colNum = params.rows();
MatrixXd Jac(rowNum, colNum);
for (int i = 0; i < rowNum; i++)
for (int j = 0; j < colNum; j++)
Jac(i, j) = Deriv(input, output, i, params, j);
return Jac;
}
//求 Hessian 矩阵对角线最大值
// Hessian 矩阵:二阶导数
double maxMatrixDiagonale(const MatrixXd &Hessian)
{
int max = 0;
for (int i = 0; i < Hessian.rows(); i++)
{
if(Hessian(i, i) > max)
max = Hessian(i, i);
}
return max;
}
// 近似下降值
double linerDeltaL(const VectorXd &step, const MatrixXd &Jac)
{
VectorXd L = Jac * step;
return L.norm();
}
void levenMar(const VectorXd &input, const VectorXd &output, VectorXd ¶ms)
{
double epsilon = 1e-12;
int iterCnt = 0; // 迭代计数
double tao = 1e-3;
long long v = 2;
// 求初始的 u
MatrixXd Jac = Jacobian(input, output, params); // 得到雅克比矩阵
MatrixXd H = Jac.transpose() * Jac; // 得到 Hessian 矩阵,4x4
double u = tao * maxMatrixDiagonale(H); // Hessian 矩阵对角线最大值乘 tao
while (iterCnt < MAX_INTER) // double 类型不能直接作比较
{
VectorXd obj = objF(input, output, params); // 误差矩阵
MatrixXd Jac = Jacobian(input, output, params); // 得到雅克比矩阵
MatrixXd H = Jac.transpose() * Jac; // 得到 Hessian 矩阵,4x4
VectorXd g = Jac.transpose() * obj; // 也就是 g,4x1
VectorXd step = (H + u * MatrixXd::Identity(H.rows(), H.cols())).inverse() * g;
if(step.norm() < epsilon)
break;
cout << "H:" << endl << H << endl;
cout << "step: " << endl << step << endl;
VectorXd paramsNew(params.rows());
paramsNew = params - step; // 更新 params
// 计算 params 误差
obj = objF(input, output, params);
// 计算 paramsNew 误差
VectorXd obj_new = objF(input, output, paramsNew);
double deltaF = Func(obj) - Func(obj_new); // 求差
double deltaL = linerDeltaL(step, Jac);
// 计算增益系数 rho
double rho = deltaF / deltaL; // 实际下降值 / 近似下降值
cout << "rho is; " << rho < 0)
{
params = paramsNew;
u *= max(1.0 / 3.0, 1 - pow(2 * rho - 1, 3));
v = 2;
} else
{
u = u * v;
v = v * 2;
}
cout << "u= " << u << "\tv= " << v << endl;
iterCnt ++;
cout << "Iteration " << iterCnt << " times, result is :" << endl<< params << endl;
}
}
int main()
{
int params_num = 4;
int total_data = 100;
VectorXd input(total_data);
VectorXd output(total_data);
double A = 5, B = 1, C = 10, D = 2; // 初始化
// 生成数据
for (int i = 0; i < total_data; i++)
{
double x = 20.0 * ((rand() % 1000) / 1000.0) - 10.0; // [-10, 10]
double deltaY = 2.0 * (rand() % 1000) / 1000.0; // 随机噪声,[0, 2]
double y = A * sin(B*x) + C * cos(D*x) + deltaY;
input(i) = x;
output(i) = y;
}
VectorXd params_levenMar(params_num);
params_levenMar << 3.6, 1.3, 7.2, 1.7;
levenMar(input, output, params_levenMar);
cout << "**********************************************" << endl;
cout << "Levenberg-Marquardt parameter: " << endl << params_levenMar << endl;
}
输出
Levenberg-Marquardt parameter:
4.85628
0.997904
10.0524
2.003
(2)网络方法
/*********************************************************** *
* Time: 2022/11/2
* Author: xiaocong
* Function: LM 算法
*
* @ 解决的是最小二乘问题,也就是找到最优的系数使得残差最小
* @ obj = A * sin(Bx) + C * cos(D*x) - F
* A * sin(Bx) + C * cos(D*x) 是目标函数
* F 是实际值
* 目标是找到使 obj 最小的系数 A B C D
***********************************************************/
#include // 稠密矩阵
#include // 稀疏矩阵
#include
#include // 控制输入输出格式等
#include
using namespace std;
using namespace Eigen;
const double DERIV_STEP = 1e-5;
const int MAX_INTER = 100;
#define max(a, b) (((a)>(b))?(a):(b))
// 定义目标函数
double func(const VectorXd input, const VectorXd &output, const VectorXd ¶ms, int objIndex)
{
// obj = A * sin(Bx) + C * cos(D*x) - F
double x1 = params(0); // params 中存储的是系数
double x2 = params(1);
double x3 = params(2);
double x4 = params(3);
double t = input(objIndex); // input 中存储的是 x
double f = output(objIndex); // output 中存储的是实际值
return x1 * sin(x2 * t) + x3 * cos(x4 * t) - f; // 返回 objIndex 项的残差
}
// 计算残差矩阵
VectorXd objF(const VectorXd &input, const VectorXd &output, const VectorXd ¶ms)
{
VectorXd obj(input.rows()); // 存储所有残差,也就是残差矩阵
for (int i = 0; i < input.rows(); i++)
obj(i) = func(input, output, params, i);
return obj; // 返回残差矩阵
}
// 残差平方和
double Func(const VectorXd &obj)
{
return obj.squaredNorm() / 2.0;
}
// 求某个系数在某点的导数
double Deriv(const VectorXd &input, const VectorXd &output, int objIndex, const VectorXd ¶ms, int paraIndex)
{
VectorXd para1 = params;
VectorXd para2 = params;
para1(paraIndex) -= DERIV_STEP;
para2(paraIndex) += DERIV_STEP;
double obj1 = func(input, output, para1, objIndex);
double obj2 = func(input, output, para2, objIndex);
return (obj2 - obj1) / (2 * DERIV_STEP); // 该点处的导数,为求雅克比矩阵做准备
}
// 计算雅克比矩阵
/****************************
* 我们优化的是系数 params,把他们看做未知数,分别求导,得到雅克比矩阵
* 维度:(input.rows() x output.rows())
* [[df/dA df/dB df/dC df/dD] <--- x1
* [df/dA df/dB df/dC df/dD] <--- x2
* [.......................]
* [df/dA df/dB df/dC df/dD]] <--- xn
****************************/
MatrixXd Jacobian(const VectorXd &input, const VectorXd &output, const VectorXd ¶ms)
{
int rowNum = input.rows();
int colNum = params.rows();
MatrixXd Jac(rowNum, colNum);
for (int i = 0; i < rowNum; i++)
for (int j = 0; j < colNum; j++)
Jac(i, j) = Deriv(input, output, i, params, j);
return Jac;
}
//求 Hessian 矩阵对角线最大值
// Hessian 矩阵:二阶导数
double maxMatrixDiagonale(const MatrixXd &Hessian)
{
int max = 0;
for (int i = 0; i < Hessian.rows(); i++)
{
if(Hessian(i, i) > max)
max = Hessian(i, i);
}
return max;
}
double linerDeltaL(const VectorXd &step, const VectorXd &gradient, const double u)
{
double L = step.transpose() * (u * step - gradient);
return L;
}
void levenMar(const VectorXd &input, const VectorXd &output, VectorXd ¶ms)
{
int errNum = input.rows();
int paraNum = params.rows();
// initial parameters
VectorXd obj = objF(input, output, params); // 得到误差矩阵
MatrixXd Jac = Jacobian(input, output, params); // 得到雅克比矩阵
MatrixXd H = Jac.transpose() * Jac; // 得到 Hessian 矩阵,4x4
VectorXd gradient = Jac.transpose() * obj; // 也就是 g,4x1
double tao = 1e-3;
long long v = 2;
double epsilon1 = 1e-12, epsilon2 = 1e-12;
double u = tao * maxMatrixDiagonale(H); // Hessian 矩阵对角线最大值乘 tao
bool found = gradient.norm() <= epsilon1;
if (found) return; // 直接退出程序,不再执行后面的程序
double last_sum = 0;
int iterCnt = 0; // 迭代计数
while (iterCnt < MAX_INTER)
{
VectorXd obj = objF(input, output, params); // 误差矩阵
MatrixXd Jac = Jacobian(input, output, params); // 得到雅克比矩阵
MatrixXd H = Jac.transpose() * Jac; // 得到 Hessian 矩阵,4x4
VectorXd gradient = Jac.transpose() * obj; // 也就是 g,4x1
if(gradient.norm() < epsilon1)
{
cout << "stop g(x) = 0 for a local minimizer optimizer." << endl;
break;
}
cout << "H:" << endl << H << endl;
VectorXd step = (H + u * MatrixXd::Identity(paraNum, paraNum)).inverse() * gradient;
// 求 Delta x = (H + uI)^{-1}g 注意:step 维度(4x1)
cout << "step: " << endl << step << endl;
if(step.norm() <= epsilon2 * (params.norm()) + epsilon2)
{
cout << "stop because change in x is small" << endl;
break;
}
VectorXd paramsNew(params.rows());
paramsNew = params - step; // 更新 params
// 计算 params 误差
obj = objF(input, output, params);
// 计算 paramsNew 误差
VectorXd obj_new = objF(input, output, paramsNew);
double deltaF = Func(obj) - Func(obj_new); // 求差
double deltaL = linerDeltaL(-1 * step, gradient, u);
// 计算增益系数 rho
double rho = deltaF / deltaL; // 实际下降值 / 近似下降值
cout << "rho is; " << rho < 0)
{
params = paramsNew;
u *= max(1.0 / 3.0, 1 - pow(2 * rho - 1, 3));
v = 2;
} else
{
u = u * v;
v = v * 2;
}
cout << "u= " << u << "\tv= " << v << endl;
iterCnt ++;
cout << "Iteration " << iterCnt << " times, result is :" << endl<< params << endl;
}
}
int main()
{
int params_num = 4;
int total_data = 100;
VectorXd input(total_data);
VectorXd output(total_data);
double A = 5, B = 1, C = 10, D = 2; // 初始化
// 生成数据
for (int i = 0; i < total_data; i++)
{
double x = 20.0 * ((rand() % 1000) / 1000.0) - 10.0; // [-10, 10]
double deltaY = 2.0 * (rand() % 1000) / 1000.0; // 随机噪声,[0, 2]
double y = A * sin(B*x) + C * cos(D*x) + deltaY;
input(i) = x;
output(i) = y;
}
VectorXd params_levenMar(params_num);
params_levenMar << 3.6, 1.3, 7.2, 1.7;
levenMar(input, output, params_levenMar);
cout << "Levenberg-Marquardt parameter: " << endl << params_levenMar << endl << endl << endl;
cout << "**********************************************" << endl;
}