(10)ATF MMU转换表

MMU简介

MMU(内存管理单元)负责将软件使用的虚拟地址转换为内存系统中使用的物理地址。MMU包括两个模块:TLB(Translation Lookaside Buffer)和TWU(Table Walk Unit)。TLB缓存最近使用的转换(类似cache,将转换映射放入缓存,提高映射效率),而TWU从内存中读取转换表(查表,完成虚拟地址到物理地址的转换)。

转换表位于内存中,用于存储虚拟地址和物理地址之间的映射,另外还包括物理内存位置的属性。这些转换表是由内存管理单元MMU访问。

软件分配的所有内存地址都是虚拟的。这些内存地址被传递到 MMU,MMU 检查 TLB 中是否有最近使用的缓存转换。如果 MMU 没有找到最近缓存的转换,TWU会从内存中读取相应的表条目,如下所示:

(10)ATF MMU转换表_第1张图片

转换(XLAT)表库

代码结构

转换表库有两个版本V1和V2,我们这里只关注V2的转换表库。

├── aarch64
│   ├── enable_mmu.S
│   └── xlat_tables_arch.c
├── ro_xlat_tables.mk
├── xlat_tables.mk
├── xlat_tables_context.c
├── xlat_tables_core.c
├── xlat_tables_private.h
└── xlat_tables_utils.c
  • 核心模块:主要是xlat_tables_core.c文件,提供转换上下文初始化和内存映射等功能
  • 上下文模块:主要是xlat_tables_context.c文件,提供添加映射区域等接口
  • 工具模块:主要是xlat_tables_utils.c文件,提供转换表状态打印,内存属性查看等功能
  • 架构模块:主要是xlat_tables_arch.c文件,提供TLB无效,创建MMU及计算物理地址空间大小等功能

映射区域

mmap regions是对要内存映射区域的抽象。

/*
 * Structure for specifying a single region of memory.
 */
typedef struct mmap_region {
	unsigned long long	base_pa;
	uintptr_t		base_va;
	size_t			size;
	unsigned int		attr;
	/* Desired granularity. See the MAP_REGION2() macro for more details. */
	size_t			granularity;
} mmap_region_t;
  • base_pa:物理基地址
  • base_va:虚拟基地址
  • size:大小
  • attr:属性
  • granularity:映射粒度

为了不直接使用结构体struct mmap_region,使用宏MAP_REGIONMAP_REGION_PLAT定义映射区域。

/*
 * Default granularity size for an mmap_region_t.
 * Useful when no specific granularity is required.
 *
 * By default, choose the biggest possible block size allowed by the
 * architectural state and granule size in order to minimize the number of page
 * tables required for the mapping.
 */
#define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)

/* Helper macro to define an mmap_region_t. */
#define MAP_REGION(_pa, _va, _sz, _attr)	\
	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)

/* Helper macro to define an mmap_region_t with an identity mapping. */
#define MAP_REGION_FLAT(_adr, _sz, _attr)			\
	MAP_REGION(_adr, _adr, _sz, _attr)

可以看出,最终展开到宏MAP_REGION_FULL_SPEC,定义如下。

/*
 * Helper macro to define an mmap_region_t.  This macro allows to specify all
 * the fields of the structure but its parameter list is not guaranteed to
 * remain stable as we add members to mmap_region_t.
 */
#define MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)		\
	{							\
		.base_pa = (_pa),				\
		.base_va = (_va),				\
		.size = (_sz),					\
		.attr = (_attr),				\
		.granularity = (_gr),				\
	}

内存属性

内存属性包括内存类型、访问权限、执行权限以及缓存性与共享性等。

/*
 * Memory mapping attributes
 */

/*
 * Memory types supported.
 * These are organised so that, going down the list, the memory types are
 * getting weaker; conversely going up the list the memory types are getting
 * stronger.
 */
#define MT_DEVICE		U(0)
#define MT_NON_CACHEABLE	U(1)
#define MT_MEMORY		U(2)
/* Values up to 7 are reserved to add new memory types in the future */

#define MT_RO			(U(0) << MT_PERM_SHIFT)
#define MT_RW			(U(1) << MT_PERM_SHIFT)

#define MT_SECURE		(U(0) << MT_PAS_SHIFT)
#define MT_NS			(U(1) << MT_PAS_SHIFT)
#define MT_ROOT			(U(2) << MT_PAS_SHIFT)
#define MT_REALM		(U(3) << MT_PAS_SHIFT)

/*
 * Access permissions for instruction execution are only relevant for normal
 * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially
 * overridden) otherwise:
 *  - Device memory is always marked as execute-never.
 *  - Read-write normal memory is always marked as execute-never.
 */
#define MT_EXECUTE		(U(0) << MT_EXECUTE_SHIFT)
#define MT_EXECUTE_NEVER	(U(1) << MT_EXECUTE_SHIFT)

/*
 * When mapping a region at EL0 or EL1, this attribute will be used to determine
 * if a User mapping (EL0) will be created or a Privileged mapping (EL1).
 */
#define MT_USER			(U(1) << MT_USER_SHIFT)
#define MT_PRIVILEGED		(U(0) << MT_USER_SHIFT)

/*
 * Shareability defines the visibility of any cache changes to
 * all masters belonging to a shareable domain.
 *
 * MT_SHAREABILITY_ISH: For inner shareable domain
 * MT_SHAREABILITY_OSH: For outer shareable domain
 * MT_SHAREABILITY_NSH: For non shareable domain
 */
#define MT_SHAREABILITY_ISH	(U(1) << MT_SHAREABILITY_SHIFT)
#define MT_SHAREABILITY_OSH	(U(2) << MT_SHAREABILITY_SHIFT)
#define MT_SHAREABILITY_NSH	(U(3) << MT_SHAREABILITY_SHIFT)

/* Compound attributes for most common usages */
#define MT_CODE			(MT_MEMORY | MT_RO | MT_EXECUTE)
#define MT_RO_DATA		(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
#define MT_RW_DATA		(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
  1. 内存类型:设备内存(MT_DEVICE),不带Cache普通内存(MT_NON_CACHEABLE),普通内存(MT_MEMORY)。
  2. 访问权限:只读(RO),读写(RW)。
  3. 物理地址空间安全属性:安全(MT_SECURE),非安全(MT_NS),ROOT(MT_ROOT),REALM(MT_REALM),后面两种是Armv9新增的RME。
  4. 指令执行权限:可执行(MT_EXECUTE),不可执行(MT_EXECUTE_NEVER)。执行权限仅对普通只读内存有效,即MT_MEMORY | MT_RO。设备内存和读写内存始终标记为不可执行,即忽略执行权限。
  5. EL0/EL1虚拟地址空间有两个区域布局:内核空间和应用空间,下面定义了转换表选择:用户空间映射(MT_USER),内核空间映射(MT_PRIVILEGED)。
  6. 对于属于一个共享域中的Master,定义了缓存共享性:内部共享(MT_SHAREABILITY_ISH),外部共享(MT_SHAREABILITY_OSH),没有共享性(MT_SHAREABILITY_NSH)。
  7. 最后结合上面定义了一些常用的属性:代码(MT_CODE),只读数据(MT_RO_DATA),读写数据(MT_RW_DATA)。

另外还定义了EL3下的内存类型,如果使能了RME,EL3的PAS(物理地址空间)属性是ROOT,否则是SECURE。

/* Memory type for EL3 regions. With RME, EL3 is in ROOT PAS */
#if ENABLE_RME
#define EL3_PAS			MT_ROOT
#else
#define EL3_PAS			MT_SECURE
#endif /* ENABLE_RME */

转换上下文

转换上下文存放了转换表的所有信息,结构体定义如下:

/* Struct that holds all information about the translation tables. */
struct xlat_ctx {
	/*
	 * Max allowed Virtual and Physical Addresses.
	 */
	unsigned long long pa_max_address;
	uintptr_t va_max_address;

	/*
	 * Array of all memory regions stored in order of ascending end address
	 * and ascending size to simplify the code that allows overlapping
	 * regions. The list is terminated by the first entry with size == 0.
	 * The max size of the list is stored in `mmap_num`. `mmap` points to an
	 * array of mmap_num + 1 elements, so that there is space for the final
	 * null entry.
	 */
	struct mmap_region *mmap;
	int mmap_num;

	/*
	 * Array of finer-grain translation tables.
	 * For example, if the initial lookup level is 1 then this array would
	 * contain both level-2 and level-3 entries.
	 */
	uint64_t (*tables)[XLAT_TABLE_ENTRIES];
	int tables_num;
#if PLAT_RO_XLAT_TABLES
	bool readonly_tables;
#endif
	/*
	 * Keep track of how many regions are mapped in each table. The base
	 * table can't be unmapped so it isn't needed to keep track of it.
	 */
#if PLAT_XLAT_TABLES_DYNAMIC
	int *tables_mapped_regions;
#endif /* PLAT_XLAT_TABLES_DYNAMIC */

	int next_table;

	/*
	 * Base translation table. It doesn't need to have the same amount of
	 * entries as the ones used for other levels.
	 */
	uint64_t *base_table;
	unsigned int base_table_entries;

	/*
	* Max Physical and Virtual addresses currently in use by the
	* translation tables. These might get updated as we map/unmap memory
	* regions but they will never go beyond pa/va_max_address.
	*/
	unsigned long long max_pa;
	uintptr_t max_va;

	/* Level of the base translation table. */
	unsigned int base_level;

	/* Set to true when the translation tables are initialized. */
	bool initialized;

	/*
	 * Translation regime managed by this xlat_ctx_t. It should be one of
	 * the EL*_REGIME defines.
	 */
	int xlat_regime;
};
  • pa_max_address & va_max_address:允许的最大虚拟地址和物理地址。
  • mmap & mmap_num:存放内存映射区域数组及数组大小,按结束地址和大小升序排列。
  • tables & tables_num:多级转换表项,比如如果查询页表等级L1,该数组存放L2页表项和L3页表项。
  • base_table & base_table_entries:转换表基地址和表项数量。
  • max_pa & max_va:当前转换表中最大的物理地址和虚拟地址。
  • base_level:基本转换表等级。
  • initialized:转换表是否初始化。
  • xlat_regime:转换机制,包括:EL1&EL0(EL1_EL0_REGIME),EL2(EL2_REGIME),EL3(EL3_REGIME),INVALID(EL_REGIME_INVALID),INVALID表示运行时决定。

对于启动阶段,创建分配了一个默认转换上下文,使用宏REGISTER_XLAT_CONTEXT定义。

REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
		      PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);

#define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \
			      _virt_addr_space_size, _phy_addr_space_size) \
	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
					 (_xlat_tables_count),		\
					 (_virt_addr_space_size),	\
					 (_phy_addr_space_size),	\
					 EL_REGIME_INVALID,		\
					 "xlat_table", "base_xlat_table")

该宏需要提供如下参数:

  • _ctx_name:上下文名字
  • _mmap_count:需要分配的最大映射区域数
  • _xlat_tables_count:需要分配的次级页表数量
  • _virt_addr_space_size:虚拟地址空间大小
  • _phy_addr_space_size:物理地址空间大小

通用转换表API

每个API都有两种接口类型:用于BL启动镜像的当前转换上下文;用于给定的上下文,以_ctx结尾。

初始化转换表

根据当前映射区域初始化转换表。在调用该API之后,只允许添加动态内存区域。

/*
 * Initialize translation tables from the current list of mmap regions. Calling
 * this function marks the transition point after which static regions can no
 * longer be added.
 */
void init_xlat_tables(void);
void init_xlat_tables_ctx(xlat_ctx_t *ctx);

init_xlat_tables最终也是调用init_xlat_tables_ctx函数,只是先获取当前的运行异常等级,配置使用哪个转换机制。

void __init init_xlat_tables(void)
{
	assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);

	unsigned int current_el = xlat_arch_current_el();

	if (current_el == 1U) {
		tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
	} else if (current_el == 2U) {
		tf_xlat_ctx.xlat_regime = EL2_REGIME;
	} else {
		assert(current_el == 3U);
		tf_xlat_ctx.xlat_regime = EL3_REGIME;
	}

	init_xlat_tables_ctx(&tf_xlat_ctx);
}

init_xlat_tables_ctx主要功能是将映射区域添加到转换表中,定义如下,关键函数为xlat_tables_map_region

void __init init_xlat_tables_ctx(xlat_ctx_t *ctx)
{
	assert(ctx != NULL);
	assert(!ctx->initialized);
	assert((ctx->xlat_regime == EL3_REGIME) ||
	       (ctx->xlat_regime == EL2_REGIME) ||
	       (ctx->xlat_regime == EL1_EL0_REGIME));
	assert(!is_mmu_enabled_ctx(ctx));

	mmap_region_t *mm = ctx->mmap;

	assert(ctx->va_max_address >=
		(xlat_get_min_virt_addr_space_size() - 1U));
	assert(ctx->va_max_address <= (MAX_VIRT_ADDR_SPACE_SIZE - 1U));
	assert(IS_POWER_OF_TWO(ctx->va_max_address + 1U));

	xlat_mmap_print(mm);

	/* All tables must be zeroed before mapping any region. */

	for (unsigned int i = 0U; i < ctx->base_table_entries; i++)
		ctx->base_table[i] = INVALID_DESC;

	for (int j = 0; j < ctx->tables_num; j++) {
#if PLAT_XLAT_TABLES_DYNAMIC
		ctx->tables_mapped_regions[j] = 0;
#endif
		for (unsigned int i = 0U; i < XLAT_TABLE_ENTRIES; i++)
			ctx->tables[j][i] = INVALID_DESC;
	}

	while (mm->size != 0U) {
		uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0U,
				ctx->base_table, ctx->base_table_entries,
				ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
		xlat_clean_dcache_range((uintptr_t)ctx->base_table,
				   ctx->base_table_entries * sizeof(uint64_t));
#endif
		if (end_va != (mm->base_va + mm->size - 1U)) {
			ERROR("Not enough memory to map region:\n"
			      " VA:0x%lx  PA:0x%llx  size:0x%zx  attr:0x%x\n",
			      mm->base_va, mm->base_pa, mm->size, mm->attr);
			panic();
		}

		mm++;
	}

	assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());
	assert(ctx->max_va <= ctx->va_max_address);
	assert(ctx->max_pa <= ctx->pa_max_address);

	ctx->initialized = true;

	xlat_tables_print(ctx);
}

添加映射区域

上面两个API是根据PA和VA添加映射区域,下面两个是以数组形式进行添加映射区域。

/*
 * Add a static region with defined base PA and base VA. This function can only
 * be used before initializing the translation tables. The region cannot be
 * removed afterwards.
 */
void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
		     size_t size, unsigned int attr);
void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);

/*
 * Add an array of static regions with defined base PA and base VA. This
 * function can only be used before initializing the translation tables. The
 * regions cannot be removed afterwards.
 */
void mmap_add(const mmap_region_t *mm);
void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);

在启动阶段定义了一个默认的转换上下文:

/*
 * Allocate and initialise the default translation context for the BL image
 * currently executing.
 */
REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
		      PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);

mmap_add_regionmmap_add都是添加到这个默认的转换上下文中。

void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
		     unsigned int attr)
{
	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);

	mmap_add_region_ctx(&tf_xlat_ctx, &mm);
}

void mmap_add(const mmap_region_t *mm)
{
	mmap_add_ctx(&tf_xlat_ctx, mm);
}

上面最终都会调用mmap_add_region_ctx函数,将定义的映射区域添加到转换上下文定义的数组中,其是就是整合到一个映射区域数组中,虚拟地址小和区域大小小的排在前面。

void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
{
	mmap_region_t *mm_cursor = ctx->mmap, *mm_destination;
	const mmap_region_t *mm_end = ctx->mmap + ctx->mmap_num;
	const mmap_region_t *mm_last;
	unsigned long long end_pa = mm->base_pa + mm->size - 1U;
	uintptr_t end_va = mm->base_va + mm->size - 1U;
	int ret;

	/* Ignore empty regions */
	if (mm->size == 0U)
		return;

	/* Static regions must be added before initializing the xlat tables. */
	assert(!ctx->initialized);

	ret = mmap_add_region_check(ctx, mm);
	if (ret != 0) {
		ERROR("mmap_add_region_check() failed. error %d\n", ret);
		assert(false);
		return;
	}

	/*
	 * Find correct place in mmap to insert new region.
	 *
	 * 1 - Lower region VA end first.
	 * 2 - Smaller region size first.
	 *
	 * VA  0                                   0xFF
	 *
	 * 1st |------|
	 * 2nd |------------|
	 * 3rd                 |------|
	 * 4th                            |---|
	 * 5th                                   |---|
	 * 6th                            |----------|
	 * 7th |-------------------------------------|
	 *
	 * This is required for overlapping regions only. It simplifies adding
	 * regions with the loop in xlat_tables_init_internal because the outer
	 * ones won't overwrite block or page descriptors of regions added
	 * previously.
	 *
	 * Overlapping is only allowed for static regions.
	 */

	while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)
	       && (mm_cursor->size != 0U)) {
		++mm_cursor;
	}

	while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&
	       (mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {
		++mm_cursor;
	}

	/*
	 * Find the last entry marker in the mmap
	 */
	mm_last = ctx->mmap;
	while ((mm_last->size != 0U) && (mm_last < mm_end)) {
		++mm_last;
	}

	/*
	 * Check if we have enough space in the memory mapping table.
	 * This shouldn't happen as we have checked in mmap_add_region_check
	 * that there is free space.
	 */
	assert(mm_last->size == 0U);

	/* Make room for new region by moving other regions up by one place */
	mm_destination = mm_cursor + 1;
	(void)memmove(mm_destination, mm_cursor,
		(uintptr_t)mm_last - (uintptr_t)mm_cursor);

	/*
	 * Check we haven't lost the empty sentinel from the end of the array.
	 * This shouldn't happen as we have checked in mmap_add_region_check
	 * that there is free space.
	 */
	assert(mm_end->size == 0U);

	*mm_cursor = *mm;

	if (end_pa > ctx->max_pa)
		ctx->max_pa = end_pa;
	if (end_va > ctx->max_va)
		ctx->max_va = end_va;
}

启用MMU

启用MMU有两个函数:setup_mmu_cfgenable_mmu_direct_el*。定义了一个与MMU配置寄存器相对应的数组,每个元素都是64位:

/*
 * MMU configuration register values for the active translation context. Used
 * from the MMU assembly helpers.
 */
uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];

setup_mmu_cfg是将转换上下文中信息存储到上面的配置寄存器数组中。

void setup_mmu_cfg(uint64_t *params, unsigned int flags,
		   const uint64_t *base_table, unsigned long long max_pa,
		   uintptr_t max_va, int xlat_regime)
{
	uint64_t mair, ttbr0, tcr;
	uintptr_t virtual_addr_space_size;

	/* Set attributes in the right indices of the MAIR. */
	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);

	/*
	 * Limit the input address ranges and memory region sizes translated
	 * using TTBR0 to the given virtual address space size.
	 */
	assert(max_va < ((uint64_t)UINTPTR_MAX));

	virtual_addr_space_size = (uintptr_t)max_va + 1U;

	assert(virtual_addr_space_size >=
		xlat_get_min_virt_addr_space_size());
	assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE);
	assert(IS_POWER_OF_TWO(virtual_addr_space_size));

	/*
	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
	 */
	int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);

	tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT;

	/*
	 * Set the cacheability and shareability attributes for memory
	 * associated with translation table walks.
	 */
	if ((flags & XLAT_TABLE_NC) != 0U) {
		/* Inner & outer non-cacheable non-shareable. */
		tcr |= TCR_SH_NON_SHAREABLE |
			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
	} else {
		/* Inner & outer WBWA & shareable. */
		tcr |= TCR_SH_INNER_SHAREABLE |
			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
	}

	/*
	 * It is safer to restrict the max physical address accessible by the
	 * hardware as much as possible.
	 */
	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);

	if (xlat_regime == EL1_EL0_REGIME) {
		/*
		 * TCR_EL1.EPD1: Disable translation table walk for addresses
		 * that are translated using TTBR1_EL1.
		 */
		tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
	} else if (xlat_regime == EL2_REGIME) {
		tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);
	} else {
		assert(xlat_regime == EL3_REGIME);
		tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
	}

	/* Set TTBR bits as well */
	ttbr0 = (uint64_t) base_table;

	if (is_armv8_2_ttcnp_present()) {
		/* Enable CnP bit so as to share page tables with all PEs. */
		ttbr0 |= TTBR_CNP_BIT;
	}

	params[MMU_CFG_MAIR] = mair;
	params[MMU_CFG_TCR] = tcr;
	params[MMU_CFG_TTBR0] = ttbr0;
}

首先是设置内存属性到MAIR寄存器,这里配置设备内存属性ATTR_DEVICEDevice_nGnRE,即聚合、不重排和提前写应答;普通内存属性为两种:ATTR_NON_CACHEABLE即普通内存、高速缓存的回写策略为直写策略、内部无高速缓存,ATTR_IWBWA_OWBWA_NTR即普通内存、内外均直写策略。

接着设置TCR_ELx寄存器,TCR_ELx 寄存器中的 TnSZ 字段控制虚拟地址空间的大小,其值为64 - 虚地址空间大小;RGN字段控制共享性和缓存性;PS/IPS控制PA或者IPA空间大小。

最后配置TTBR寄存器,存放了页表的基地址,这里使用了低位虚拟地址空间TTBR0。

enable_mmu_direct_elx是一段汇编实现,将上面的数组配置到相应的MMU寄存器中,然后使能MMU,以enable_mmu_direct_el3为例,实现如下。

	func enable_mmu_direct_\()el\el
#if ENABLE_ASSERTIONS
		_mrs	x1, sctlr, \el
		tst	x1, #SCTLR_M_BIT
		ASM_ASSERT(eq)
#endif
		/* Invalidate all TLB entries */
		tlbi_invalidate_all \el

		mov	x7, x0
		adrp	x0, mmu_cfg_params
		add	x0, x0, :lo12:mmu_cfg_params

		/* MAIR */
		ldr	x1, [x0, #(MMU_CFG_MAIR << 3)]
		_msr	mair, \el, x1

		/* TCR */
		ldr	x2, [x0, #(MMU_CFG_TCR << 3)]
		_msr	tcr, \el, x2

		/* TTBR */
		ldr	x3, [x0, #(MMU_CFG_TTBR0 << 3)]
		_msr	ttbr0, \el, x3

		/*
		 * Ensure all translation table writes have drained into memory, the TLB
		 * invalidation is complete, and translation register writes are
		 * committed before enabling the MMU
		 */
		dsb	ish
		isb

		/* Set and clear required fields of SCTLR */
		_mrs	x4, sctlr, \el
		mov_imm	x5, SCTLR_WXN_BIT | SCTLR_C_BIT | SCTLR_M_BIT
		orr	x4, x4, x5

		/* Additionally, amend SCTLR fields based on flags */
		bic	x5, x4, #SCTLR_C_BIT
		tst	x7, #DISABLE_DCACHE
		csel	x4, x5, x4, ne

		_msr	sctlr, \el, x4
		isb

		ret
	endfunc enable_mmu_direct_\()el\el

示例

以ARM FVP平台BL1阶段为例,并假设不支持RME。在arm_bl1_plat_arch_setup函数中会创建MMU页表,并启用MMU。

void arm_bl1_plat_arch_setup(void)
{
	...
	const mmap_region_t bl_regions[] = {
		MAP_BL1_TOTAL,
		MAP_BL1_RO,
		{0}
	};

	setup_page_tables(bl_regions, plat_arm_get_mmap());
	enable_mmu_el3(0);
    ...
}

内存映射区域

页表创建包括两种类型:通用内存区域和特定平台内存区域。

通用内存区域

MAP_BL1_TOTAL定义了BL1可见的所有可信RAM空间,属性为:普通内存,可读性,安全。其宏展开如下:

#define MAP_BL1_TOTAL		MAP_REGION_FLAT(			\
					bl1_tzram_layout.total_base,	\
					bl1_tzram_layout.total_size,	\
					MT_MEMORY | MT_RW | EL3_PAS)

MAP_BL1_RO定义了BL1的代码段内存,属性为:代码(普通内存,只读,可执行),安全。

#define MAP_BL1_RO		MAP_REGION_FLAT(			\
					BL_CODE_BASE,			\
					BL1_CODE_END - BL_CODE_BASE,	\
					MT_CODE | EL3_PAS)

特定平台内存区域

对于不同的平台,也需要创建平台相关的页表(主要是外设),并映射内存区域。FVP平台BL1阶段的plat_arm_get_mmap()定义为:

/*
 * Table of memory regions for various BL stages to map using the MMU.
 * This doesn't include Trusted SRAM as setup_page_tables() already takes care
 * of mapping it.
 */
#ifdef IMAGE_BL1
const mmap_region_t plat_arm_mmap[] = {
	ARM_MAP_SHARED_RAM,
	V2M_MAP_FLASH0_RO,
	V2M_MAP_IOFPGA,
	MAP_DEVICE0,
#if FVP_INTERCONNECT_DRIVER == FVP_CCN
	MAP_DEVICE1,
#endif
#if TRUSTED_BOARD_BOOT
	/* To access the Root of Trust Public Key registers. */
	MAP_DEVICE2,
	/* Map DRAM to authenticate NS_BL2U image. */
	ARM_MAP_NS_DRAM1,
#endif
	{0}
};
#endif

对于ARM_MAP_SHARED_RAM定义了共享内存区域,属性为:设备内存,读写,安全。其展开如下:

#define ARM_MAP_SHARED_RAM	MAP_REGION_FLAT(			\
					ARM_SHARED_RAM_BASE,		\
					ARM_SHARED_RAM_SIZE,		\
					MT_DEVICE | MT_RW | EL3_PAS)

如果使能安全启动,MAP_DEVICE2定义了访问设备根公钥寄存器内存区域,属性为:设备内存,读写,安全。其展开如下:

#define MAP_DEVICE2	MAP_REGION_FLAT(DEVICE2_BASE,			\
					DEVICE2_SIZE,			\
					MT_DEVICE | MT_RW | MT_SECURE)

页表创建

setup_page_tables函数用于创建页表,定义如下:

/*
 * Set up the page tables for the generic and platform-specific memory regions.
 * The size of the Trusted SRAM seen by the BL image must be specified as well
 * as an array specifying the generic memory regions which can be;
 * - Code section;
 * - Read-only data section;
 * - Init code section, if applicable
 * - Coherent memory region, if applicable.
 */

void __init setup_page_tables(const mmap_region_t *bl_regions,
			      const mmap_region_t *plat_regions)
{
	/*
	 * Map the Trusted SRAM with appropriate memory attributes.
	 * Subsequent mappings will adjust the attributes for specific regions.
	 */
	mmap_add(bl_regions);

	/* Now (re-)map the platform-specific memory regions */
	mmap_add(plat_regions);

	/* Create the page tables to reflect the above mappings */
	init_xlat_tables();
}

分别将BL区域和平台自定义区域添加到转换表中,然后创建页表,添加映射关系。

启用MMU

由于BL1处于EL3等级,调用enable_mmu_el3函数,使能MMU。

void enable_mmu_el3(unsigned int flags)
{
	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
		      tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
		      tf_xlat_ctx.va_max_address, EL3_REGIME);
	enable_mmu_direct_el3(flags);
}

参考

  1. 万字长文带你搞定MMU&TLB&TWU

欢迎关注“安全有理”微信公众号。

安全有理

你可能感兴趣的:(ATF,arm开发,内存)