C语言基础总结

Linux上使用gcc编译器

$ gcc -v

C Hello World 实例

C 程序主要包括以下部分:

  • 预处理器指令
  • 函数
  • 变量
  • 语句 & 表达式
  • 注释
    让我们看一段简单的代码,可以输出单词 "Hello World":
#include 
 
int main()
{
   /* 我的第一个 C 程序 */
   printf("Hello, World! \n");
 
   return 0;
}

接下来我们讲解一下上面这段程序:

  1. 程序的第一行 #include 是预处理器指令,告诉 C 编译器在实际编译之前要包含 stdio.h 文件。
  2. 下一行 int main() 是主函数,程序从这里开始执行。
  3. 下一行 /.../ 将会被编译器忽略,这里放置程序的注释内容。它们被称为程序的注释。
  4. 下一行 printf(...) 是 C 中另一个可用的函数,会在屏幕上显示消息 "Hello, World!"。
  5. 下一行 return 0; 终止 main() 函数,并返回值 0。

编译 & 执行 C 程序

$ gcc hello.c
$ ./a.out
Hello, World!

$ gcc test1.c test2.c -o main.out
$ ./main.out

关键字

image.png

image.png

image.png

整数类型

image.png
image.png

为了得到某个类型或某个变量在特定平台上的准确大小,您可以使用 sizeof 运算符。表达式 sizeof(type) 得到对象或类型的存储字节大小。下面的实例演示:

#include 
#include 
 
int main()
{
   printf("char 存储大小 : %lu \n", sizeof(char));
   printf("unsigned char 存储大小 : %lu \n", sizeof(unsigned char));
   printf("short 存储大小 : %lu \n", sizeof(short));
   printf("unsigned short 存储大小 : %lu \n", sizeof(unsigned short));
   printf("int 存储大小 : %lu \n", sizeof(int));
   printf("unsigned int 存储大小 : %lu \n", sizeof(unsigned int));
   printf("long 存储大小 : %lu \n", sizeof(long));
   printf("unsigned long 存储大小 : %lu \n", sizeof(unsigned long));
   printf("float 存储大小 : %lu \n", sizeof(float));
   printf("double 存储大小 : %lu \n", sizeof(double));
   printf("long int 存储大小 : %lu \n", sizeof(long int));
   printf("long long 存储大小 : %lu \n", sizeof(long long));
   printf("long double 存储大小 : %lu \n", sizeof(long double));
   return 0;
}

浮点类型

image.png

头文件 float.h 定义了宏,在程序中可以使用这些值和其他有关实数二进制表示的细节。下面的实例将输出浮点类型占用的存储空间以及它的范围值:

#include 
#include 
 
int main()
{
   printf("float 存储最大字节数 : %lu \n", sizeof(float));
   printf("float 最小值: %E\n", FLT_MIN );
   printf("float 最大值: %E\n", FLT_MAX );
   printf("精度值: %d\n", FLT_DIG );
 
   return 0;
}
float 存储最大字节数 : 4
float 最小值: 1.175494E-38
float 最大值: 3.402823E+38
精度值: 6

void 类型

image.png

C 变量

变量其实只不过是程序可操作的存储区的名称。C 中每个变量都有特定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上。


image.png

C 中的变量定义

变量定义就是告诉编译器在何处创建变量的存储,以及如何创建变量的存储。下面列出几个有效的声明:

int    i, j, k;
char   c, ch;
float  f, salary;
double d;

变量可以在声明的时候被初始化

extern int d = 3, f = 5;    // d 和 f 的声明与初始化
int d = 3, f = 5;           // 定义并初始化 d 和 f
byte z = 22;                // 定义并初始化 z
char x = 'x';               // 变量 x 的值为 'x'

C 中的变量声明

变量声明向编译器保证变量以指定的类型和名称存在,这样编译器在不需要知道变量完整细节的情况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变量声明。

变量的声明有两种情况:

  • 1、一种是需要建立存储空间的。例如:int a 在声明的时候就已经建立了存储空间。
  • 2、另一种是不需要建立存储空间的,通过使用extern关键字声明变量名而不定义它。 例如:extern int a 其中变量 a 可以在别的文件中定义的。
  • 除非有extern关键字,否则都是变量的定义。
extern int i; //声明,不是定义
int i; //声明,也是定义

实例
尝试下面的实例,其中,变量在头部就已经被声明,但是定义与初始化在主函数内:

#include 
 
// 函数外定义变量 x 和 y
int x;
int y;
int addtwonum()
{
    // 函数内声明变量 x 和 y 为外部变量
    extern int x;
    extern int y;
    // 给外部变量(全局变量)x 和 y 赋值
    x = 1;
    y = 2;
    return x+y;
}
 
int main()
{
    int result;
    // 调用函数 addtwonum
    result = addtwonum();
 
    printf("result 为: %d",result);
    return 0;
}

addtwonum.c 文件代码:

#include 
/*外部变量声明*/
extern int x ;
extern int y ;
int addtwonum()
{
    return x+y;
}

test.c 文件代码:

#include 
 
/*定义两个全局变量*/
int x=1;
int y=2;
int addtwonum();
int main(void)
{
    int result;
    result = addtwonum();
    printf("result 为: %d\n",result);
    return 0;
}
$ gcc addtwonum.c test.c -o main
$ ./main
result 为: 3

C 中的左值(Lvalues)和右值(Rvalues)
C 中有两种类型的表达式:

  1. 左值(lvalue):指向内存位置的表达式被称为左值(lvalue)表达式。左值可以出现在赋值号的左边或右边。
  2. 右值(rvalue):术语右值(rvalue)指的是存储在内存中某些地址的数值。右值是不能对其进行赋值的表达式,也就是说,右值可以出现在赋值号的右边,但不能出现在赋值号的左边。

C 常量

常量是固定值,在程序执行期间不会改变。这些固定的值,又叫做字面量。
常量可以是任何的基本数据类型,比如整数常量、浮点常量、字符常量,或字符串字面值,也有枚举常量。
常量就像是常规的变量,只不过常量的值在定义后不能进行修改。

定义常量

在 C 中,有两种简单的定义常量的方式:

  1. 使用 #define 预处理器。
  2. 使用 const 关键字。
#include 
 
#define LENGTH 10  
#define WIDTH  5
#define NEWLINE '\n'
 
int main()
{
 
   int area; 
 
   area = LENGTH * WIDTH;
   printf("value of area : %d", area);
   printf("%c", NEWLINE);
 
   return 0;
}
#include 
 
int main()
{
   const int  LENGTH = 10;
   const int  WIDTH  = 5;
   const char NEWLINE = '\n';
   int area; 
 
   area = LENGTH * WIDTH;
   printf("value of area : %d", area);
   printf("%c", NEWLINE);
 
   return 0;
}

请注意,把常量定义为大写字母形式,是一个很好的编程实践。

C 存储类

存储类定义 C 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C 程序中可用的存储类:

  • auto
  • register
  • static
  • extern

auto 存储类

auto 存储类是所有局部变量默认的存储类。

{
   int mount;
   auto int month;
}

上面的实例定义了两个带有相同存储类的变量,auto 只能用在函数内,即 auto 只能修饰局部变量。

register 存储类

register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 '&' 运算符(因为它没有内存位置)。

{
   register int  miles;
}

寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 'register' 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。即硬件和实现满足条件将存储在寄存器中,否则只能存储在RAM中。

static 存储类

static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
全局声明的一个 static 变量或方法可以被任何函数或方法调用,只要这些方法出现在跟 static 变量或方法同一个文件中。

以下实例演示了 static 修饰全局变量和局部变量的应用:

#include 
 
/* 函数声明 */
void func1(void);
 
static int count=10;        /* 全局变量 - static 是默认的 */
 
int main()
{
  while (count--) {
      func1();
  }
  return 0;
}
 
void func1(void)
{
/* 'thingy' 是 'func1' 的局部变量 - 只初始化一次
 * 每次调用函数 'func1' 'thingy' 值不会被重置。
 */               
  static int thingy=5;
  thingy++;
  printf(" thingy 为 %d , count 为 %d\n", thingy, count);
}
thingy 为 6 , count 为 9
thingy 为 7 , count 为 8
thingy 为 8 , count 为 7
thingy 为 9 , count 为 6
thingy 为 10 , count 为 5
thingy 为 11 , count 为 4
thingy 为 12 , count 为 3
thingy 为 13 , count 为 2
thingy 为 14 , count 为 1
thingy 为 15 , count 为 0

extern 存储类
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。extern 是用来在另一个文件中声明一个全局变量或函数。extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:
第一个文件:main.c

#include 
 
int count ;
extern void write_extern();
 
int main()
{
   count = 5;
   write_extern();
}

第二个文件:support.c

#include 
 
extern int count;
 
void write_extern(void)
{
   printf("count is %d\n", count);
}

第二个文件中的 extern 关键字用于声明已经在第一个文件 main.c 中定义的 count。

$ gcc main.c support.c
$ ./a.out
count is 5

C 运算符

c=a++; \\ 先赋值后运算
c=++a; \\ 先运算后赋值

&& 逻辑与运算符
|| 逻辑或运算符
! 逻辑非运算符

位运算符 &, |, ^, ~, >>, <<

杂项运算符


image.png
#include 
 
int main()
{
   int a = 4;
   short b;
   double c;
   int* ptr;
 
   /* sizeof 运算符实例 */
   printf("Line 1 - 变量 a 的大小 = %lu\n", sizeof(a) );
   printf("Line 2 - 变量 b 的大小 = %lu\n", sizeof(b) );
   printf("Line 3 - 变量 c 的大小 = %lu\n", sizeof(c) );
 
   /* & 和 * 运算符实例 */
   ptr = &a;    /* 'ptr' 现在包含 'a' 的地址 */
   printf("a 的值是 %d\n", a);
   printf("*ptr 是 %d\n", *ptr);
 
   /* 三元运算符实例 */
   a = 10;
   b = (a == 1) ? 20: 30;
   printf( "b 的值是 %d\n", b );
 
   b = (a == 10) ? 20: 30;
   printf( "b 的值是 %d\n", b );
}
Line 1 - 变量 a 的大小 = 4
Line 2 - 变量 b 的大小 = 2
Line 3 - 变量 c 的大小 = 8
a 的值是 4
*ptr 是 4
b 的值是 30
b 的值是 20

函数声明

函数声明包括以下几个部分:

return_type function_name( parameter list );

针对上面定义的函数 max(),以下是函数声明:

int max(int num1, int num2);

在函数声明中,参数的名称并不重要,只有参数的类型是必需的,因此下面也是有效的声明:

int max(int, int);

当您在一个源文件中定义函数且在另一个文件中调用函数时,函数声明是必需的。在这种情况下,您应该在调用函数的文件顶部声明函数。

调用函数

#include 
 
/* 函数声明 */
int max(int num1, int num2);
 
int main ()
{
   /* 局部变量定义 */
   int a = 100;
   int b = 200;
   int ret;
 
   /* 调用函数来获取最大值 */
   ret = max(a, b);
 
   printf( "Max value is : %d\n", ret );
 
   return 0;
}
 
/* 函数返回两个数中较大的那个数 */
int max(int num1, int num2)
{
   /* 局部变量声明 */
   int result;
 
   if (num1 > num2)
      result = num1;
   else
      result = num2;
 
   return result;
}

函数参数

如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。


image.png

默认情况下,C 使用传值调用来传递参数。一般来说,这意味着函数内的代码不能改变用于调用函数的实际参数。

C 传值方式调用函数

向函数传递参数的传值调用方法,把参数的实际值复制给函数的形式参数。在这种情况下,修改函数内的形式参数不会影响实际参数。
默认情况下,C 语言使用传值调用方法来传递参数。一般来说,这意味着函数内的代码不会改变用于调用函数的实际参数。

#include 
 
/* 函数声明 */
void swap(int x, int y);
 
int main ()
{
   /* 局部变量定义 */
   int a = 100;
   int b = 200;
 
   printf("交换前,a 的值: %d\n", a );
   printf("交换前,b 的值: %d\n", b );
 
   /* 调用函数来交换值 */
   swap(a, b);
 
   printf("交换后,a 的值: %d\n", a );
   printf("交换后,b 的值: %d\n", b );
 
   return 0;
}

/* 函数定义 */
void swap(int x, int y)
{
   int temp;
 
   temp = x; /* 保存 x 的值 */
   x = y;    /* 把 y 赋值给 x */
   y = temp; /* 把 temp 赋值给 y */
 
   return;
}
交换前,a 的值: 100
交换前,b 的值: 200
交换后,a 的值: 100
交换后,b 的值: 200

C 引用方式调用函数

通过引用传递方式,形参为指向实参地址的指针,当对形参的指向操作时,就相当于对实参本身进行的操作。
传递指针可以让多个函数访问指针所引用的对象,而不用把对象声明为全局可访问。

#include 
 
/* 函数声明 */
void swap(int *x, int *y);
 
int main ()
{
   /* 局部变量定义 */
   int a = 100;
   int b = 200;
 
   printf("交换前,a 的值: %d\n", a );
   printf("交换前,b 的值: %d\n", b );
 
   /* 调用函数来交换值
    * &a 表示指向 a 的指针,即变量 a 的地址
    * &b 表示指向 b 的指针,即变量 b 的地址
   */
   swap(&a, &b);
 
   printf("交换后,a 的值: %d\n", a );
   printf("交换后,b 的值: %d\n", b );
 
   return 0;
}
/* 函数定义 */
void swap(int *x, int *y)
{
   int temp;
   temp = *x;    /* 保存地址 x 的值 */
   *x = *y;      /* 把 y 赋值给 x */
   *y = temp;    /* 把 temp 赋值给 y */
 
   return;
}
交换前,a 的值: 100
交换前,b 的值: 200
交换后,a 的值: 200
交换后,b 的值: 100

C 作用域规则

任何一种编程中,作用域是程序中定义的变量所存在的区域,超过该区域变量就不能被访问。C 语言中有三个地方可以声明变量:

  1. 在函数或块内部的局部变量
  2. 在所有函数外部的全局变量
  3. 在形式参数的函数参数定义中

全局变量与局部变量在内存中的区别:

  • 全局变量保存在内存的全局存储区中,占用静态的存储单元;
  • 局部变量保存在栈中,只有在所在函数被调用时才动态地为变量分配存储单元。

初始化局部变量和全局变量

当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动对其初始化

C 数组

类似于python的list,tuple
C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。

声明数组

type arrayName [ arraySize ];
double balance[10];

初始化数组

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
balance[4] = 50.0;

访问数组元素

double salary = balance[9];
#include 
 
int main ()
{
   int n[ 10 ]; /* n 是一个包含 10 个整数的数组 */
   int i,j;
 
   /* 初始化数组元素 */        
   for ( i = 0; i < 10; i++ )
   {
      n[ i ] = i + 100; /* 设置元素 i 为 i + 100 */
   }
 
   /* 输出数组中每个元素的值 */
   for (j = 0; j < 10; j++ )
   {
      printf("Element[%d] = %d\n", j, n[j] );
   }
 
   return 0;
}

C 多维数组

type name[size1][size2]...[sizeN];
int threedim[5][10][4];
#include 
 
int main ()
{
   /* 一个带有 5 行 2 列的数组 */
   int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
   int i, j;
 
   /* 输出数组中每个元素的值 */
   for ( i = 0; i < 5; i++ )
   {
      for ( j = 0; j < 2; j++ )
      {
         printf("a[%d][%d] = %d\n", i,j, a[i][j] );
      }
   }
   return 0;
}

C 传递数组给函数

方式 1
形式参数是一个指针(您可以在下一章中学习到有关指针的知识):

void myFunction(int *param)
{
.
}

方式 2
形式参数是一个已定义大小的数组:

void myFunction(int param[10])
{
.
}

方式 3
形式参数是一个未定义大小的数组:

void myFunction(int param[])
{
.
}
#include 
 
/* 函数声明 */
double getAverage(int arr[], int size);
 
int main ()
{
   /* 带有 5 个元素的整型数组 */
   int balance[5] = {1000, 2, 3, 17, 50};
   double avg;
 
   /* 传递一个指向数组的指针作为参数 */
   avg = getAverage( balance, 5 ) ;
 
   /* 输出返回值 */
   printf( "平均值是: %f ", avg );
 
   return 0;
}
 
double getAverage(int arr[], int size)
{
  int    i;
  double avg;
  double sum=0;
 
  for (i = 0; i < size; ++i)
  {
    sum += arr[i];
  }
 
  avg = sum / size;
 
  return avg;
}

C 从函数返回数组

C 语言不允许返回一个完整的数组作为函数的参数。但是,您可以通过指定不带索引的数组名来返回一个指向数组的指针。
返回指针的函数,如下:

int * myFunction()
{
.
}

C 不支持在函数外返回局部变量的地址,除非定义局部变量为 static 变量。

#include 
#include 
#include 
 
/* 要生成和返回随机数的函数 */
int * getRandom( )
{
  static int  r[10];
  int i;
 
  /* 设置种子 */
  srand( (unsigned)time( NULL ) );
  for ( i = 0; i < 10; ++i)
  {
     r[i] = rand();
     printf( "r[%d] = %d\n", i, r[i]);
 
  }
 
  return r;
}
 
/* 要调用上面定义函数的主函数 */
int main ()
{
   /* 一个指向整数的指针 */
   int *p;
   int i;
 
   p = getRandom();
   for ( i = 0; i < 10; i++ )
   {
       printf( "*(p + %d) : %d\n", i, *(p + i));
   }
 
   return 0;
}

C enum(枚举)

类似于python的list,tuple

enum 枚举名 {枚举元素1,枚举元素2,……};
// 等同于用#define
#define MON  1
#define TUE  2
#define WED  3
#define THU  4
#define FRI  5
#define SAT  6
#define SUN  7

enum DAY
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
};

注意:第一个枚举成员的默认值为整型的 0,后续枚举成员的值在前一个成员上加 1。我们在这个实例中把第一个枚举成员的值定义为 1,第二个就为 2,以此类推。

enum season {spring, summer=3, autumn, winter};

枚举变量的定义

1、先定义枚举类型,再定义枚举变量

enum DAY
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
};
enum DAY day;

2、定义枚举类型的同时定义枚举变量

enum DAY
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;

3、省略枚举名称,直接定义枚举变量

enum
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
#include
 
enum DAY
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
};
 
int main()
{
    enum DAY day;
    day = WED;
    printf("%d",day);
    return 0;
}
3

在C 语言中,枚举类型是被当做 int 或者 unsigned int 类型来处理的,所以按照 C 语言规范是没有办法遍历枚举类型的。
不过在一些特殊的情况下,枚举类型必须连续是可以实现有条件的遍历。

以下实例使用 for 来遍历枚举的元素:

#include
 
enum DAY
{
      MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
int main()
{
    // 遍历枚举元素
    for (day = MON; day <= SUN; day++) {
        printf("枚举元素:%d \n", day);
    }
}

以上实例输出结果为:

枚举元素:1
枚举元素:2
枚举元素:3
枚举元素:4
枚举元素:5
枚举元素:6
枚举元素:7

C 指针

指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:

type *var-name;

在这里,type 是指针的基类型,它必须是一个有效的 C 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

int    *ip;    /* 一个整型的指针 */
double *dp;    /* 一个 double 型的指针 */
float  *fp;    /* 一个浮点型的指针 */
char   *ch;     /* 一个字符型的指针 */

所有实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,对应指针的值的类型都是一样的,都是一个代表内存地址的长的十六进制数。
不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。

#include 
 
int main ()
{
   int  var = 20;   /* 实际变量的声明 */
   int  *ip;        /* 指针变量的声明 */
 
   ip = &var;  /* 在指针变量中存储 var 的地址 */
 
   printf("Address of var variable: %p\n", &var  );
 
   /* 在指针变量中存储的地址 */
   printf("Address stored in ip variable: %p\n", ip );
 
   /* 使用指针访问值 */
   printf("Value of *ip variable: %d\n", *ip );
 
   return 0;
}

C 中的 NULL 指针

在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。
NULL 指针是一个定义在标准库中的值为零的常量。

#include 
 
int main ()
{
   int  *ptr = NULL;
 
   printf("ptr 的地址是 %p\n", ptr  );
 
   return 0;
}
ptr 的地址是 0x0

递增一个指针

我们喜欢在程序中使用指针代替数组,因为变量指针可以递增,而数组不能递增,数组可以看成一个指针常量。下面的程序递增变量指针,以便顺序访问数组中的每一个元素:

#include 
 
const int MAX = 3;
 
int main ()
{
   int  var[] = {10, 100, 200};
   int  i, *ptr;
 
   /* 指针中的数组地址 */
   ptr = var; //注意这里不需要&,直接将数组名赋给指针变量
   for ( i = 0; i < MAX; i++)
   {
 
      printf("存储地址:var[%d] = %x\n", i, ptr );
      printf("存储值:var[%d] = %d\n", i, *ptr );
 
      /* 移动到下一个位置 */
      ptr++;
   }
   return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

存储地址:var[0] = bf882b30
存储值:var[0] = 10
存储地址:of var[1] = bf882b34
存储值: var[1] = 100
存储地址:of var[2] = bf882b38
存储值:var[2] = 200

递减一个指针

同样地,对指针进行递减运算,即把值减去其数据类型的字节数,如下所示:

#include 
 
const int MAX = 3;
 
int main ()
{
   int  var[] = {10, 100, 200};
   int  i, *ptr;
 
   /* 指针中最后一个元素的地址 */
   ptr = &var[MAX-1]; //这里需要用&来取得地址
   for ( i = MAX; i > 0; i--)
   {
 
      printf("存储地址:var[%d] = %x\n", i-1, ptr );
      printf("存储值:var[%d] = %d\n", i-1, *ptr );
 
      /* 移动到下一个位置 */
      ptr--;
   }
   return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

存储地址:var[2] = 518a0ae4
存储值:var[2] = 200
存储地址:var[1] = 518a0ae0
存储值:var[1] = 100
存储地址:var[0] = 518a0adc
存储值:var[0] = 10

指针的比较

#include 
 
const int MAX = 3;
 
int main ()
{
   int  var[] = {10, 100, 200};
   int  i, *ptr;
 
   /* 指针中第一个元素的地址 */
   ptr = var;
   i = 0;
   while ( ptr <= &var[MAX - 1] )
   {
 
      printf("Address of var[%d] = %x\n", i, ptr );
      printf("Value of var[%d] = %d\n", i, *ptr );
 
      /* 指向上一个位置 */
      ptr++;
      i++;
   }
   return 0;
}

C 指针数组

我们想要让数组存储指向 int 或 char 或其他数据类型的指针。下面是一个指向整数的指针数组的声明:

int *ptr[MAX];

在这里,把 ptr 声明为一个数组,由 MAX 个整数指针组成。因此,ptr 中的每个元素,都是一个指向 int 值的指针。下面的实例用到了三个整数,它们将存储在一个指针数组中,如下所示:

#include 
 
const int MAX = 3;
 
int main ()
{
   int  var[] = {10, 100, 200};
   int i, *ptr[MAX];
 
   for ( i = 0; i < MAX; i++)
   {
      ptr[i] = &var[i]; /* 赋值为整数的地址 */
   }
   for ( i = 0; i < MAX; i++)
   {
      printf("Value of var[%d] = %d\n", i, *ptr[i] );
   }
   return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

C 指向数组的指针

数组名是一个指向数组中第一个元素的常量指针。

double balance[50];

balance 是一个指向 &balance[0] 的指针,即数组 balance 的第一个元素的地址。因此,下面的程序片段把 p 赋值为 balance 的第一个元素的地址:

double *p;
double balance[10];
 
p = balance;
#include 
 
int main ()
{
   /* 带有 5 个元素的整型数组 */
   double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
   double *p;
   int i;
 
   p = balance;
 
   /* 输出数组中每个元素的值 */
   printf( "使用指针的数组值\n");
   for ( i = 0; i < 5; i++ )
   {
       printf("*(p + %d) : %f\n",  i, *(p + i) );
   }
 
   printf( "使用 balance 作为地址的数组值\n");
   for ( i = 0; i < 5; i++ )
   {
       printf("*(balance + %d) : %f\n",  i, *(balance + i) );
   }
 
   return 0;
}

你可能感兴趣的:(C语言基础总结)