- 数据结构之顺序表和栈
Dust-Chasing
数据结构算法c语言
一、顺序表1.1顺序表的概念及结构顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。1.2静态顺序表静态顺序表,即使用定长的数组来存储元素,用下面一张图就可以清楚看懂1.3动态顺序表动态顺序表:使用动态开辟的数组存储。与静态顺序表不同,动态顺序表使用的数组大小可以动态变化,从而实现更灵活的储存数据。二、动态顺序表的实现静态顺序表只适
- 数据结构之链表(单链表)
Dust-Chasing
数据结构链表c语言
目录一、链表的概念二、链表的分类三、单链表的实现1.创建新的节点2.打印链表3.链表的头插和尾插尾插:要注意第一次插入时链表为空的情况。头插:4.单链表的头删和尾删尾删:注意链表中只有一个元素的情况。且要保存尾节点的前一个节点。头删:5.单链表的查找一、链表的概念链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表实际上就像一列火车一样,每一个
- 深入理解指针(1)
Dust-Chasing
c语言开发语言
指针,一般是代指针变量,指针是C语言中至关重要的一部分。由于内容较多,且较难,所以我们掰开了揉碎了慢慢讲,今天我们开始先讲解字符指针,指针数组,数组指针。一、字符指针指针与数据类型相同,有多种分类inta=0;int*pd=&a;//取a的地址,并将其存入指针变量pd中doubleb=5.20;double*pb=&b;//取b的地址floatc=13.14;float*pc=&c;//取c的地址
- 使用kubeadm部署高可用IPV4/IPV6集群---V1.32
使用kubeadm部署高可用IPV4/IPV6集群https://github.com/cby-chen/Kubernetes开源不易,帮忙点个star,谢谢了k8s基础系统环境配置配置IP#注意!#若虚拟机是进行克隆的那么网卡的UUID和MachineID会重复#需要重新生成新的UUIDUUID和MachineID#UUID和MachineID重复无法DHCP获取到IPV6地址sshroot@1
- stability ai推出的 AI模型2D图像转3D视频
微丽宝
AI工具人工智能3d音视频
StableVirtualCamera是StabilityAl推出的A|模型,能将2D图像转换为具有真实深度和透视感的3D视频。用户可以通过指定相机轨迹和多种动态路径(如螺旋、推拉变焦、平移等)来生成视频。模型支持从1到32张输入图像生成不同宽高比(如1:1、9:16、16:9)的视频,最长可达1000帧。无需复杂的重建或优化,可生成高质量的3D视频,同时保持3D一致性和时间平滑性。StableV
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 《当人工智能遇上广域网:跨越地理距离的通信变革》
程序猿阿伟
人工智能
在数字化时代,广域网作为连接全球信息的纽带,让数据能够在不同地区的网络之间流动。然而,地理距离给广域网数据传输带来诸多挑战,如高延迟、低带宽、信号衰减和不稳定等问题。幸运的是,飞速发展的人工智能技术为解决这些难题提供了新的方向,开启了广域网传输的新篇章。广域网传输面临的地理挑战广域网覆盖范围极为广泛,可连接不同城市、国家甚至跨越洲际,这使得数据传输要跨越漫长的地理距离。以跨国公司的广域网为例,其总
- Python实现微信自动发送消息
热心市民小汪
python微信开发语言
实现需求:Python定时发送微信消息importpyautoguiaspgimportpyperclipaspcfromapscheduler.schedulers.blockingimportBlockingScheduler"""实现定时自动发送消息"""#操作间隔为1秒pg.PAUSE=1name='Hello~'msg='是时候点餐啦!!'defmain():#打开微信pg.hotkey
- 递归实例:登台阶问题:假如有n个台阶,一次只能上1个台阶或2个台阶,请问走到第n个台阶有几种走法?@C语言
热心市民小汪
C语言代码练习c语言算法开发语言
假如有n个台阶,一次只能上1个台阶或2个台阶,请问走到第n个台阶有几种走法?为便于读者理解题意,这里举例说明如下:假如有3个台阶,那么总计就有3种走法:第一种为每次上1个台阶,上3次;第二种为先上2个台阶,再上1个台阶;第三种为先上1个台阶,再上2个台阶。输入为n,输出为走到第n个台阶有几种走法Input3Output如果输入是3,走到第3个台阶的走法总计有3种,1,1,1和1,2和2,1,输出为
- 某人想将手中的一张面值100元的人民币换成10元、5元、2元和1元面值的票子。要求换正好40张,且每种票子至少一张。问:有几种换法?(C语言)
热心市民小汪
代码练习C语言c语言学习java
一、首先分析题目有两点1、总和是100元。2、一共分为四十张且每种至少有一张。二、思路分析。10元的为s张,5元的为w张,2元的为e张,1元的为y张。n为有几种换算法首先,每个至少有一张a>=1,b>=1,c>=1,d>=1。#includeintmain(){inttotal;for(ints=1;s<=10;s++){for(intw=1;w<=20;w++){for(inte=1;e<=40
- Spring Bean 的生命周期:从创建到销毁的完整解析
一点多余.
java开发语言
引言:为什么需要了解SpringBean的生命周期?在Spring框架中,Bean是应用程序的核心构建块,理解其生命周期对于开发高效、稳定的应用至关重要。根据2023年JetBrains开发者调查报告,超过75%的Java开发者使用Spring框架,而Bean的生命周期管理是Spring的核心特性之一。以下数据展示了Bean生命周期的重要性:90%的Spring性能问题与Bean的初始化或销毁不当
- 181.HarmonyOS NEXT系列教程之列表交换组件整体架构详解
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT系列教程之列表交换组件整体架构详解效果演示1.组件概述1.1功能介绍ListExchangeViewComponent是一个支持列表项交换和删除的自定义组件,主要用于实现如扣款列表等场景。主要功能包括:列表项拖拽排序滑动删除自定义列表项
- Android Token的原理和本地安全存储
Ya-Jun
android安全
AndroidToken的原理和本地安全存储前言在移动应用开发中,Token是实现用户身份验证和授权的重要机制。本文将深入介绍Token的原理,以及在Android平台上如何安全地存储Token,帮助开发者构建可靠的身份验证系统。基础知识1.Token概述1.1Token的作用身份验证授权访问无状态设计1.2Token类型AccessTokenRefreshTokenJWT(JSONWebToke
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【软考论文】论软件系统架构评估
罗小爬EX
软考(系统架构师)软考系统架构师论文
目录一、题目二、论文2.1摘要2.2正文三、扩展3.1基础知识3.2评估方式综合对比3.3SAAM基于场景的架构分析方法3.4ATAM架构权衡分析方法3.5质量属性一、题目对于软件系统,尤其是大规模的复杂软件系统来说,软件的系统架构对于确保最终系统的质量具有十分重要的意义,不恰当的系统架构将给项目带来高昂的代价和难以避免的灾难。对一个系统架构进行评估,是为了:分析现有架构存在的风险,检验设计中提出
- Linux中的 mutex [二] —— 乐观自旋机制
jianchi88
内核同步Linux稳定性android服务器linuxubuntu
本文基于5.4.86版本内核mutex可视作是spinlock的可睡眠版本,同样是线程无法继续向前执行,但spinlock是"spin",导致该CPU上无法发生线程切换,而mutex是"block"(我们通常翻译成「阻塞」),可以发生线程切换,让所在CPU上的其他线程继续执行。阻塞既可以发生在线程试图获取mutex时,也可以发生在线程持有mutex时。现在的mutex机制,要从这几方面纬度理解:o
- 技术大佬和普通程序员改bug的区别!
程序员干货站
大数据编程语言java人工智能数据分析
阅读本文大概需要2min文/强哥;未经授权禁止转载在我这么多年的工作生涯里,难免遇到那些工作糊弄的开发同事,随意编程的实习生,不够细致的测试,缺乏专业度的产品...产品的体验,取决于多个环节的把控,但很多情况下,由于bug严重影响体验,或者直接造成产品事故的,那么开发想甩锅都甩不掉!今天就给大家从几方面讲讲,经验丰富的程序员,是怎么debug的!1、并不是所有bug都需要修复修bug有个前提,那就
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 【指标对比】SMA 和 EMA区别
T-I-M
时间序列
在描述时间序列趋势(如股票价格)时,简单移动平均(SMA)和指数移动平均(EMA)各有特点。以下是详细分析:一、核心对比指标SMAEMA权重分配等权重指数衰减权重滞后性较高较低噪声敏感性较不敏感更敏感计算复杂度简单需要递归计算参数敏感性对窗口大小敏感对衰减因子敏感二、特性分析1.SMA(简单移动平均)公式:SMAt=1n∑i=0n−1Pt−iSMA_t=\frac{1}{n}\sum_{i=0}^
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 快速理解Vue3中Pinia里的subscribe方法使用
MXN_小南学前端
vue3vue前端
快速理解Vue3中Pinia里的subscribe方法使用一、Pinia简介Pinia是Vue3的状态管理库,类似Vue2中的Vuex,但使用更简洁高效二、subscribe方法简介subscribe方法是Pinia中的监听器函数,有点像watch,但监听的是store中的状态(数据/state)变化,在store中的状态变化时会执行自定义逻辑。可用于调试和定位问题、记录日志后续分析、触发操作(比
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- Linux中mutex机制
C嘎嘎嵌入式开发
Linuxlinux运维服务器
在Linux中,mutex是一种用于多线程编程的同步机制,用于保护共享资源,防止多个线程同时访问或修改这些资源,从而避免竞态条件的发生。mutex是“mutualexclusion”的缩写,意为“互斥”。1.Mutex的基本概念互斥锁:mutex是一种锁机制,用于确保在任何时刻只有一个线程可以访问共享资源。当一个线程持有mutex时,其他试图获取该mutex的线程将被阻塞,直到持有mutex的线程
- 香港站群服务器租用应该怎么选?
莱卡云(Lcayun)
服务器运维linux前端网络
在租用香港站群服务器时,应该综合考虑多个因素以确保选择到性价比最高、性能最优的服务器。以下是一些关键的选择要点:香港站群服务器就找莱卡云IP资源数量和质量:数量:站群服务器一般需要多个独立IP,以便将每个站点分布在不同的IP上,避免搜索引擎对同IP站点的关联性判断1。分散性:尽量选择不同C段甚至不同B段的IP,这样可以增加站群的SEO效果,降低被搜索引擎认为是关联站点的风险1。质
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 金鼎量化助手中的板块与成份股如何实时联动以及股票代码与股软联动
wxqq_541182238
金鼎量化助手经验分享笔记其他人工智能
在专栏之前的文章中有介绍板块强度的作用,使用了哪些参考指标等,下面介绍金鼎量化助手板块强度页面中的板块与成份个股的联动以及如何实现个股与股软:如同花顺、通达信之间的联动。通过股票代码直接联动到股软快速查看。一、板块强度与成份股的关联在金鼎量化助手的板块强度页面中分了两列,第一列是板块,第二列是板块对应的成份股,每天打开软件后会实时获取到板块的最新强度排名情况(需保证勾选上实时刷新选项框),板块列表
- Google的BeyondCorp 零信任网络
yinhezhanshen
网络
Google的BeyondCorp是一种零信任安全框架1。简单来说,就是抛弃了传统的以网络边界为基础的安全防护模式,不再认为只要在企业内部网络里就都是安全的,而是把访问控制的重点放在每个用户和设备上。产生背景过去企业常用防火墙等构建安全边界,认为边界内是安全的,边界外有威胁。但随着网络发展,边界变得模糊,攻击技术演进,边界防护效果变差,内部也会出现安全问题。在这种情况下,Google提出了Beyo
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f