DFS(深度优先搜索)问题通常是在树或者图结构上使用递归解决的一种常用算法。「网格」结构中也常常会使用到DFS算法来完成。岛屿问题是这类网格 DFS 问题的典型代表。
本文将以岛屿问题为例,展示网格类问题 DFS 通用思路。
网格问题通常是由n个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
/**
* @auther gaowenbin
* @create 2021-03-30-15:41
*/
public class daoyu {
public static void dfs(int[][] grid, int r, int c) {
// 判断 base case
if (!inArea(grid, r, c)) {
return;
}
// 如果这个格子不是岛屿,直接返回
if (grid[r][c] != 1) {
return;
}
grid[r][c] = 2; // 将格子标记为「已遍历过」
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
public static boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
}
1.最大面积
给定一个包含了一些 0 和 1 的非空二维数组 grid,一个岛屿是一组相邻的 1(代表陆地),这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被 0(代表海洋)包围着。
找到给定的二维数组中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。
/**
* @auther gaowenbin
* @create 2021-03-30-15:41
*/
public class daoyu {
public int maxAreaOfIsland(int[][] grid) {
int res = 0;
for (int r = 0; r < grid.length; r++) {
for (int c = 0; c < grid[0].length; c++) {
if (grid[r][c] == 1) {
int a = area(grid, r, c);
res = Math.max(res, a);
}
}
}
return res;
}
public int area(int[][] grid, int r, int c) {
if (!inArea(grid, r, c)) {
return 0;
}
if (grid[r][c] != 1) {
return 0;
}
grid[r][c] = 2;
return 1
+ area(grid, r - 1, c)
+ area(grid, r + 1, c)
+ area(grid, r, c - 1)
+ area(grid, r, c + 1);
}
public boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
}
2.岛屿周长
给定一个包含 0 和 1 的二维网格地图,其中 1 表示陆地,0 表示海洋。网格中的格子水平和垂直方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(一个或多个表示陆地的格子相连组成岛屿)。
岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。计算这个岛屿的周长。
/**
* @auther gaowenbin
* @create 2021-03-30-15:41
*/
public class daoyu {
public int islandPerimeter(int[][] grid) {
for (int r = 0; r < grid.length; r++) {
for (int c = 0; c < grid[0].length; c++) {
if (grid[r][c] == 1) {
// 题目限制只有一个岛屿,计算一个即可
return dfs(grid, r, c);
}
}
}
return 0;
}
public int dfs(int[][] grid, int r, int c) {
// 函数因为「坐标 (r, c) 超出网格范围」返回,对应一条黄色的边
if (!inArea(grid, r, c)) {
return 1;
}
// 函数因为「当前格子是海洋格子」返回,对应一条蓝色的边
if (grid[r][c] == 0) {
return 1;
}
// 函数因为「当前格子是已遍历的陆地格子」返回,和周长没关系
if (grid[r][c] != 1) {
return 0;
}
grid[r][c] = 2;
return dfs(grid, r - 1, c)
+ dfs(grid, r + 1, c)
+ dfs(grid, r, c - 1)
+ dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
public boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
}