1)、建表语法是create temporary table …。
2)、一个临时表只能被创建它的session访问,对其他线程不可见。所以,图中session A创建的临时表t,对于session B就是不可见的。
3)、临时表可以与普通表同名。
4)、session A内有同名的临时表和普通表的时候,show create语句,以及增删改查语句访问的是临时表。
5)、show tables命令不显示临时表。
由于临时表只能被创建它的session访问,所以在这个session结束的时候,会自动删除临时表。也正是由于这个特性,临时表就特别适合我们文章开头的join优化这种场景。为什么呢?
原因主要包括以下两个方面:
不同session的临时表是可以重名的,如果有多个session同时执行join优化,不需要担心表名重复导致建表失败的问题。
不需要担心数据删除问题。如果使用普通表,在流程执行过程中客户端发生了异常断开,或者数据库发生异常重启,还需要专门来清理中间过程中生成的数据表。而临时表由于会自动回收,所以不需要这个额外的操作。
临时表与内存表的区别:
内存表,指的是使用Memory引擎的表,建表语法是create table … engine=memory。这种表的数据都保存在内存里,系统重启的时候会被清空,但是表结构还在。除了这两个特性看上去比较“奇怪”外,从其他的特征上看,它就是一个正常的表。
临时表,可以使用各种引擎类型 。如果是使用InnoDB引擎或者MyISAM引擎的临时表,写数据的时候是写到磁盘上的。当然,临时表也可以使用Memory引擎。
由于不用担心线程之间的重名冲突,临时表经常会被用在复杂查询的优化过程中。其中,分库分表系统的跨库查询就是一个典型的使用场景。
一般分库分表的场景,就是要把一个逻辑上的大表分散到不同的数据库实例上。比如。将一个大表ht,按照字段f,拆分成1024个分表,然后分布到32个数据库实例上。
一般情况下,这种分库分表系统都有一个中间层proxy。不过,也有一些方案会让客户端直接连接数据库,也就是没有proxy这一层。
在这个架构中,分区key的选择是以“减少跨库和跨表查询”为依据的。如果大部分的语句都会包含f的等值条件,那么就要用f做分区键。这样,在proxy这一层解析完SQL语句以后,就能确定将这条语句路由到哪个分表做查询。
如果这个表上还有另外一个索引k,并且查询语句是这样的:
select v from ht where k >= M order by t_modified desc limit 100;
这时候,由于查询条件里面没有用到分区字段f,只能到所有的分区中去查找满足条件的所有行,然后统一做order by 的操作。这种情况下,有两种比较常用的思路。
在proxy层的进程代码中实现排序:
这种方式的优势是处理速度快,拿到分库的数据以后,直接在内存中参与计算。不过,这个方案的缺点也比较明显:
需要的开发工作量比较大。我们举例的这条语句还算是比较简单的,如果涉及到复杂的操作,比如group by,甚至join这样的操作,对中间层的开发能力要求比较高;
对proxy端的压力比较大,尤其是很容易出现内存不够用和CPU瓶颈的问题。
把各个分库拿到的数据,汇总到一个MySQL实例的一个表中,然后在这个汇总实例上做逻辑操作。
比如上面这条语句,执行流程可以类似这样:
在汇总库上创建一个临时表temp_ht,表里包含三个字段v、k、t_modified;
在各个分库上执行:select v,k,t_modified from ht_x where k >= M order by t_modified desc limit 100;
把分库执行的结果插入到temp_ht表中;执行
select v from temp_ht order by t_modified desc limit 100;
create temporary table temp_t(id int primary key)engine=innodb;
这个语句的时候,MySQL要给这个InnoDB表创建一个frm文件保存表结构定义,还要有地方保存表数据。
这个frm文件放在临时文件目录下,文件名的后缀是.frm,前缀是“#sql{进程id}_{线程id}_序列号”。你可以使用select @@tmpdir命令,来显示实例的临时文件目录。
而关于表中数据的存放方式,在不同的MySQL版本中有着不同的处理方式:
在5.6以及之前的版本里,MySQL会在临时文件目录下创建一个相同前缀、以.ibd为后缀的文件,用来存放数据文件;
而从 5.7版本开始,MySQL引入了一个临时文件表空间,专门用来存放临时文件的数据。因此,我们就不需要再创建ibd文件了。
从文件名的前缀规则,我们可以看到,其实创建一个叫作t1的InnoDB临时表,MySQL在存储上认为我们创建的表名跟普通表t1是不同的,因此同一个库下面已经有普通表t1的情况下,还是可以再创建一个临时表t1的。
MySQL维护数据表,除了物理上要有文件外,内存里面也有一套机制区别不同的表,每个表都对应一个table_def_key。
一个普通表的table_def_key的值是由“库名+表名”得到的,所以如果你要在同一个库下创建两个同名的普通表,创建第二个表的过程中就会发现table_def_key已经存在了。
而对于临时表,table_def_key在“库名+表名”基础上,又加入了“server_id+thread_id”。
也就是说,session A和sessionB创建的两个临时表t1,它们的table_def_key不同,磁盘文件名也不同,因此可以并存。
在实现上,每个线程都维护了自己的临时表链表。这样每次session内操作表的时候,先遍历链表,检查是否有这个名字的临时表,如果有就优先操作临时表,如果没有再操作普通表;在session结束的时候,对链表里的每个临时表,执行 “DROP TEMPORARY TABLE +表名”操作。
如果当前的binlog_format=row,那么跟临时表有关的语句,就不会记录到binlog里。也就是说,只在binlog_format=statment/mixed 的时候,binlog中才会记录临时表的操作。
这种情况下,创建临时表的语句会传到备库执行,因此备库的同步线程就会创建这个临时表。主库在线程退出的时候,会自动删除临时表,但是备库同步线程是持续在运行的。所以,这时候我们就需要在主库上再写一个DROP TEMPORARY TABLE传给备库执行。
MySQL在记录binlog的时候,不论是create table还是alter table语句,都是原样记录,甚至于连空格都不变。但是如果执行drop table t_normal,系统记录binlog就会写成:
DROP TABLE t_normal
/* generated by server */
也就是改成了标准的格式。为什么要这么做呢 ?
drop table命令是可以一次删除多个表的。比如,在上面的例子中,设置binlog_format=row,如果主库上执行 "drop table t_normal, temp_t"这个命令,那么binlog中就只能记录:
DROP TABLE t_normal
/* generated by server */
因为备库上并没有表temp_t,将这个命令重写后再传到备库执行,才不会导致备库同步线程停止。
所以,drop table命令记录binlog的时候,就必须对语句做改写。*“/* generated by server /”说明了这是一个被服务端改写过的命令。
主库上不同的线程创建同名的临时表是没关系的,但是传到备库执行是怎么处理的呢?
主库M上的两个session创建了同名的临时表t1,这两个create temporary table t1 语句都会被传到备库S上。
但是,备库的应用日志线程是共用的,也就是说要在应用线程里面先后执行这个create 语句两次。(即使开了多线程复制,也可能被分配到从库的同一个worker中执行)。那么,这会不会导致同步线程报错 ?
显然是不会的,备库线程在执行的时候,要把这两个t1表当做两个不同的临时表来处理。这,又是怎么实现的呢?
MySQL在记录binlog的时候,会把主库执行这个语句的线程id写到binlog中。这样,在备库的应用线程就能够知道执行每个语句的主库线程id,并利用这个线程id来构造临时表的table_def_key:
session A的临时表t1,在备库的table_def_key就是:库名+t1+“M的serverid”+“session A的thread_id”;
session B的临时表t1,在备库的table_def_key就是 :库名+t1+“M的serverid”+“session B的thread_id”。
由于table_def_key不同,所以这两个表在备库的应用线程里面是不会冲突的。
在实际应用中,临时表一般用于处理比较复杂的计算逻辑。由于临时表是每个线程自己可见的,所以不需要考虑多个线程执行同一个处理逻辑时,临时表的重名问题。在线程退出的时候,临时表也能自动删除,省去了收尾和异常处理的工作。
在binlog_format='row’的时候,临时表的操作不记录到binlog中,也省去了不少麻烦,这也可以成为你选择binlog_format时的一个考虑素。
需要注意的是,我们上面说到的这种临时表,是用户自己创建的 ,也可以称为用户临时表。与它相对应的,就是内部临时表。
可以看到,这里的内存临时表起到了暂存数据的作用,而且计算过程还用上了临时表主键id的唯一性约束,实现了union的语义。
顺便提一下,如果把上面这个语句中的union改成union all的话,就没有了“去重”的语义。这样执行的时候,就依次执行子查询,得到的结果直接作为结果集的一部分,发给客户端。因此也就不需要临时表了。
基于上面的union、union all和group by语句的执行过程的分析,我们来回答文章开头的问题:MySQL什么时候会使用内部临时表?
如果语句执行过程可以一边读数据,一边直接得到结果,是不需要额外内存的,否则就需要额外的内存,来保存中间结果;
join_buffer是无序数组,sort_buffer是有序数组,临时表是二维表结构;
如果执行逻辑需要用到二维表特性,就会优先考虑使用临时表。比如我们的例子中,union需要用到唯一索引约束, group by还需要用到另外一个字段来存累积计数。
小结
通过今天这篇文章,我重点和你讲了group by的几种实现算法,从中可以总结一些使用的指导原则:
如果对group by语句的结果没有排序要求,要在语句后面加 order by null;
尽量让group by过程用上表的索引,确认方法是explain结果里没有Using temporary 和 Using filesort;
如果group by需要统计的数据量不大,尽量只使用内存临时表;也可以通过适当调大tmp_table_size参数,来避免用到磁盘临时表;
如果数据量实在太大,使用SQL_BIG_RESULT这个提示,来告诉优化器直接使用排序算法得到group by的结果。
group by未使用索引,在Extra字段里面,我们可以看到三个信息:
Using index,表示这个语句使用了覆盖索引,选择了索引a,不需要回表;
Using temporary,表示使用了临时表;
Using filesort,表示需要排序。
InnoDB和Memory引擎的数据组织方式是不同的:
InnoDB引擎把数据放在主键索引上,其他索引上保存的是主键id。这种方式,我们称之为索引组织表(Index Organizied Table)。
而Memory引擎采用的是把数据单独存放,索引上保存数据位置的数据组织形式,我们称之为堆组织表(Heap Organizied Table)。
两个引擎的一些典型不同:
InnoDB表的数据总是有序存放的,而内存表的数据就是按照写入顺序存放的;
当数据文件有空洞的时候,InnoDB表在插入新数据的时候,为了保证数据有序性,只能在固定的位置写入新值,而内存表找到空位就可以插入新值;
数据位置发生变化的时候,InnoDB表只需要修改主键索引,而内存表需要修改所有索引;
InnoDB表用主键索引查询时需要走一次索引查找,用普通索引查询的时候,需要走两次索引查找。而内存表没有这个区别,所有索引的“地位”都是相同的。
InnoDB支持变长数据类型,不同记录的长度可能不同;内存表不支持Blob 和 Text字段,并且即使定义了varchar(N),实际也当作char(N),也就是固定长度字符串来存储,因此内存表的每行数据长度相同。
其实你可以这么分析:
如果你的表更新量大,那么并发度是一个很重要的参考指标,InnoDB支持行锁,并发度比内存表好;
能放到内存表的数据量都不大。如果你考虑的是读的性能,一个读QPS很高并且数据量不大的表,即使是使用InnoDB,数据也是都会缓存在InnoDB Buffer Pool里的。因此,使用InnoDB表的读性能也不会差。
建议你把普通内存表都用InnoDB表来代替。但是,有一个场景却是例外的。
内存临时表刚好可以无视内存表的两个不足,主要是下面的三个原因:
临时表不会被其他线程访问,没有并发性的问题;
临时表重启后也是需要删除的,清空数据这个问题不存在;
备库的临时表也不会影响主库的用户线程。
这里使用内存临时表的效果更好,原因有三个:
相比于InnoDB表,使用内存表不需要写磁盘,往表temp_t的写数据的速度更快;
索引b使用hash索引,查找的速度比B-Tree索引快;
临时表数据只有2000行,占用的内存有限。
将临时表t1改成内存临时表,并且在字段b上创建一个hash索引。
create temporary table temp_t(id int primary key, a int, b int, index (b))engine=memory;
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);
由于重启会丢数据,如果一个备库重启,会导致主备同步线程停止;如果主库跟这个备库是双M架构,还可能导致主库的内存表数据被删掉。
因此,在生产上,我不建议你使用普通内存表。
其实InnoDB表性能还不错,而且数据安全也有保障。而内存表由于不支持行锁,更新语句会阻塞查询,性能也未必就如想象中那么好。
基于内存表的特性,我们还分析了它的一个适用场景,就是内存临时表。内存表支持hash索引,这个特性利用起来,对复杂查询的加速效果还是很不错的。