【信号与系统】三大变换公式表 | 傅里叶变换 | 拉普拉斯变换 | Z变换

三大变换公式表


文章目录

  • 三大变换公式表
  • 傅里叶变换 F \mathcal{F} F
  • 拉普拉斯变换 L \mathcal{L} L
  • z变换 Z \mathcal{Z} Z


傅里叶变换 F \mathcal{F} F

f ( t ) f(t) f(t) F ( ω ) F(\omega) F(ω)
e − a t e^{-at} eat 1 a + j ω \frac 1 {a+j\omega} a+jω1
e − a ∥ t ∥ e^{-a \|t\| } eat 2 a a 2 + ω 2 \frac{2a}{a^2+\omega^2} a2+ω22a
δ ( t ) \delta (t) δ(t) 1 1 1
δ ′ ( t ) \delta '(t) δ(t) j ω j\omega jω
常 数   E 常数 \ E  E 2 π E δ ( ω ) 2\pi E \delta(\omega) 2πEδ(ω)
sin ⁡ ( ω 0 t ) \sin(\omega_0t) sin(ω0t) j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)] jπ[δ(ω+ω0)δ(ωω0)]
cos ⁡ ( ω 0 t ) \cos(\omega_0t) cos(ω0t) π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] \pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)] π[δ(ω+ω0)+δ(ωω0)]
阶 跃 函 数   u ( t ) 阶跃函数 \ u(t)  u(t) 1 j ω + π δ ( ω ) \frac 1 {j\omega}+\pi\delta(\omega) jω1+πδ(ω)
− 1 j 2 π t + 1 2 δ ( − t ) -\frac1 {j2\pi t}+\frac 1 2 \delta(-t) j2πt1+21δ(t) u ( ω ) u(\omega) u(ω)
符 号 函 数   s g n ( t ) 符号函数 \ sgn(t)  sgn(t) 2 j ω \frac 2 {j\omega} jω2
门 函 数   k E [ u ( t + τ 2 k ) − u ( t − τ 2 k ) ] 门函数 \ \color{red}k\color{black}E[u(t+\frac{\tau}{2\color{red}k\color{black}})-u(t-\frac{\tau}{2\color{red}k\color{black}})]  kE[u(t+2kτ)u(t2kτ)] E τ k S a ( ω τ 2 k ) E\frac{\tau}{\color{red}k\color{black}}Sa(\frac{\omega\tau}{2\color{red}k\color{black}}) EkτSa(2kωτ)
滤 波 器   ω 0 π S a ( ω 0 t ) 滤波器 \ \frac{\omega_0}{\pi}Sa(\omega_0 t)  πω0Sa(ω0t) u ( ω + ω 0 ) − u ( ω − ω 0 ) u(\omega+\omega_0)-u(\omega-\omega_0) u(ω+ω0)u(ωω0)
三 角 脉 冲   ( 门 ∗ 门 ) ( − τ 2 , τ 2 ) 三角脉冲 \ (门*门) (-\frac \tau 2 , \frac \tau 2)  ()(2τ,2τ) E τ 2 S a 2 ( ω τ 4 ) E\frac \tau 2 Sa^2(\frac{\omega\tau}{4}) E2τSa2(4ωτ)
f ( t ) ∥ t − B t − A f(t)\|_{t-B}^{t-A} f(t)tBtA F ( ω ) ⋅ [ e − j ω A − e − j ω B ] F(\omega)\cdot[e^{-j\omega A}-e^{-j\omega B}] F(ω)[ejωAejωB]
t f ( a t ) tf(at) tf(at) j ∥ a ∥ F ( ω a ) d ω \frac j {\| a\|} \frac {F(\frac \omega a)}{d\omega} ajdωF(aω)

∫ S a ( t ) d t = S i ( t ) \int Sa(t)dt=Si(t) Sa(t)dt=Si(t)

拉普拉斯变换 L \mathcal{L} L

f ( t ) f(t) f(t) F ( s ) F(s) F(s)
1 1 1 1 s \frac 1 s s1
t t t 1 s 2 \frac 1 {s^2} s21
t n − 1 t^{n-1} tn1 ( n − 1 ) ! s n \frac{(n-1)!}{s^n} sn(n1)!
1 π t \frac 1 {\sqrt{\pi t}} πt 1 1 s \frac 1 {\sqrt{s}} s 1
2 t π \frac{2\sqrt{t}}{\sqrt{\pi}} π 2t 1 s 3 / 2 \frac 1 {s^{ 3 / 2}} s3/21
t a − 1 t^{a-1} ta1 Γ ( a ) s a \frac{\Gamma(a)}{s^a} saΓ(a)
e a t e^{at} eat 1 s − a   ( s − s h i f t i n g ) \frac 1 {s-a} \ (s-shifting) sa1 (sshifting)
1 a − b ( e a t − e b t ) \frac 1 {a-b} (e^{at}-e^{bt}) ab1(eatebt) 1 ( s − a ) ( s − b ) ( a ≠ b ) \frac 1 {(s-a)(s-b)}(a\ne b) (sa)(sb)1(a=b)
1 a − b ( a e a t − b e b t ) \frac 1 {a-b} (ae^{at}-be^{bt}) ab1(aeatbebt) s ( s − a ) ( s − b ) ( a ≠ b ) \frac s {(s-a)(s-b)}(a\ne b) (sa)(sb)s(a=b)
sin ⁡ ω t \sin \omega t sinωt ω s 2 + ω 2 \frac \omega {s^2+\omega^2} s2+ω2ω
cos ⁡ ω t \cos \omega t cosωt s s 2 + ω 2 \frac s{s^2+\omega^2} s2+ω2s
sinh ⁡ a t \sinh a t sinhat a s 2 − a 2 \frac a {s^2-a^2} s2a2a
cosh ⁡ a t \cosh a t coshat s s 2 − a 2 \frac s {s^2-a^2} s2a2s
1 ω 2 ( 1 − cos ⁡ ω t ) \frac 1 {\omega^2}(1-\cos \omega t) ω21(1cosωt) 1 s ( s 2 + ω 2 ) \frac 1 {s(s^2+\omega^2)} s(s2+ω2)1
1 ω 3 ( ω t − sin ⁡ ω t ) \frac 1 {\omega^3}(\omega t-\sin \omega t) ω31(ωtsinωt) 1 s 2 ( s 2 + ω 2 ) \frac 1 {s^2(s^2+\omega^2)} s2(s2+ω2)1
1 2 ω 3 ( sin ⁡ ω t − ω t cos ⁡ ω t ) \frac 1 {2\omega^3}(\sin\omega t-\omega t \cos \omega t) 2ω31(sinωtωtcosωt) 1 ( s 2 + ω 2 ) 2 \frac 1 {(s^2+\omega^2)^2} (s2+ω2)21
t 2 ω sin ⁡ ω t \frac t {2\omega}\sin \omega t 2ωtsinωt s ( s 2 + ω 2 ) 2 \frac s {(s^2+\omega^2)^2} (s2+ω2)2s
1 2 ω ( sin ⁡ ω t + ω t cos ⁡ ω t ) \frac 1 {2\omega}(\sin\omega t+\omega t \cos \omega t) 2ω1(sinωt+ωtcosωt) s 2 ( s 2 + ω 2 ) 2 \frac {s^2} {(s^2+\omega^2)^2} (s2+ω2)2s2
1 b 2 − a 2 ( cos ⁡ a t − cos ⁡ b t ) \frac 1 {b^2-a^2}(\cos at-\cos bt) b2a21(cosatcosbt) s ( s 2 + a 2 ) ( s 2 + b 2 ) ( a ≠ b ) \frac s{(s^2+a^2)(s^2+b^2)}(a\ne b) (s2+a2)(s2+b2)s(a=b)
1 4 k 3 ( sin ⁡ k t cos ⁡ k t − cos ⁡ k t sinh ⁡ k t ) \frac 1 {4k^3}(\sin kt \cos kt-\cos kt \sinh kt) 4k31(sinktcosktcosktsinhkt) 1 s 4 + 4 k 4 \frac 1 {s^4+4k^4} s4+4k41
1 2 k 2 sin ⁡ k t sinh ⁡ k t \frac 1 {2k^2}\sin kt \sinh kt 2k21sinktsinhkt s s 4 + 4 k 4 \frac s{s^4+4k^4} s4+4k4s
1 2 k 3 ( sinh ⁡ k t − sin ⁡ k t ) \frac 1 {2k^3}(\sinh kt-\sin kt) 2k31(sinhktsinkt) 1 s 4 − k 4 \frac 1 {s^4-k^4} s4k41
1 2 k 2 ( cosh ⁡ k t − cos ⁡ k t ) \frac 1 {2k^2}(\cosh kt-\cos kt) 2k21(coshktcoskt) s s 4 − k 4 \frac s{s^4-k^4} s4k4s
e b t u ( t − a ) e^{bt}u(t-a) ebtu(ta) e − a ( s − b ) s − b \frac{e^{-a(s-b)}}{s-b} sbea(sb)
f ( a t − b ) u ( a t − b ) f(at-b)u(at-b) f(atb)u(atb) 1 a F ( s a ) e − s b a \frac 1 a F(\frac s a)e^{-s\frac b a} a1F(as)esab
− ln ⁡ t − 0.5772 -\ln t-0.5772 lnt0.5772 1 s ln ⁡ s \frac 1 s \ln s s1lns
1 t ( e b t − e a t ) \frac 1 t (e^{bt}-e^{at}) t1(ebteat) ln ⁡ s − a s − b \ln \frac{s-a}{s-b} lnsbsa
2 t ( 1 − cos ⁡ ω t ) \frac 2 t (1-\cos \omega t) t2(1cosωt) ln ⁡ s 2 + ω 2 s 2 \ln \frac {s^2+\omega^2}{s^2} lns2s2+ω2
2 t ( 1 − cosh ⁡ a t ) \frac 2 t (1-\cosh a t) t2(1coshat) ln ⁡ s 2 − a 2 s 2 \ln \frac {s^2-a^2}{s^2} lns2s2a2
1 t sin ⁡ ω t \frac 1 t \sin \omega t t1sinωt arctan ⁡ ω s \arctan \frac \omega s arctansω
S i ( t ) = ∫ 0 t sin ⁡ x x d x Si(t)=\int_0^t\frac{\sin x} x dx Si(t)=0txsinxdx 1 s arccos ⁡ s \frac 1 s \arccos s s1arccoss

z变换 Z \mathcal{Z} Z

单边z变换 右边序列 n>=0

f ( n ) f(n) f(n) F ( z ) F(z) F(z) 收敛域|z|
δ ( n ) \delta(n) δ(n) 1 1 1 >= 0
δ ( n − m ) \delta(n-m) δ(nm) z − m z^{-m} zm >0
u ( n ) u(n) u(n) z z − 1 \frac z {z-1} z1z >=1
a n a^n an z z − a \frac z {z-a} zaz >=|a|
n a n na^n nan a z ( z − a ) 2 \frac {az}{(z-a)^2} (za)2az >a
n 2 a n n^2a^n n2an a z ( z + a ) ( z − a ) 3 \frac {az(z+a)}{(z-a)^3} (za)3az(z+a) >a
n 3 a n n^3a^n n3an a z ( z 2 + 4 a z + a 2 ) ( z − a ) 4 \frac {az(z^2+4az+a^2)}{(z-a)^4} (za)4az(z2+4az+a2) >a
( n + 1 ) a n (n+1)a^n (n+1)an z 2 ( z − a ) 2 \frac {z^2}{(z-a)^2} (za)2z2 >|a|
( n + 1 ) ⋯ ( n + m ) a n m ! ( m ≥ 1 ) \frac{(n+1)\cdots(n+m)a^n}{m!}(m\geq1) m!(n+1)(n+m)an(m1) z m + 1 ( z − a ) m + 1 \frac {z^{m+1}}{(z-a)^{m+1}} (za)m+1zm+1 >|a|
β n sin ⁡ n ω 0 \beta^n\sin n\omega_0 βnsinnω0 β z sin ⁡ ω 0 z 2 − 2 β z cos ⁡ ω 0 + β 2 \frac{\beta z \sin \omega_0}{z^2-2\beta z \cos \omega_0+\beta^2} z22βzcosω0+β2βzsinω0 > β \beta β
β n cos ⁡ n ω 0 \beta^n\cos n\omega_0 βncosnω0 z ( z − β cos ⁡ ω 0 ) z 2 − 2 β z cos ⁡ ω 0 + β 2 \frac{z(z-\beta \cos \omega_0)}{z^2-2\beta z \cos \omega_0+\beta^2} z22βzcosω0+β2z(zβcosω0) > β \beta β
sinh ⁡ n ω 0 \sinh n\omega_0 sinhnω0 z sinh ⁡ ω 0 z 2 − 2 cosh ⁡ ω 0 + 1 \frac{ z \sinh \omega_0}{z^2-2 \cosh \omega_0+1} z22coshω0+1zsinhω0 >=
cosh ⁡ n ω 0 \cosh n\omega_0 coshnω0 z ( z − cosh ⁡ ω 0 ) z 2 − 2 z cosh ⁡ ω 0 + 1 \frac{z(z-\cosh \omega_0)}{z^2-2z \cosh \omega_0+1} z22zcoshω0+1z(zcoshω0) >=
a n n ! \frac {a^n}{n!} n!an e a z e^{\frac a z} eza >=
1 ( 2 n ) ! \frac 1 {(2n)!} (2n)!1 cosh ⁡ ( z − 1 2 ) \cosh(z^{-\frac 1 2}) cosh(z21) >=
( ln ⁡ a ) n n ! \frac {(\ln a)^n}{n!} n!(lna)n a 1 z a^{\frac 1 z} az1 >=
1 n \frac 1 n n1 ln ⁡ z z − 1 \ln \frac z {z-1} lnz1z >=
C n m C_n^m Cnm z ( z − 1 ) m + 1 \frac z {(z-1)^{m+1}} (z1)m+1z >=
a n R N ( n ) a^n R_N(n) anRN(n) 1 − a N z − N 1 − a z − 1 \frac{1-a^Nz^{-N}}{1-az^{-1}} 1az11aNzN

你可能感兴趣的:(电类工科笔记,一些数学,信号处理,数学,傅里叶变换,拉普拉斯变换,z变换)