- GitHub项目推荐--基于LLM的开源爬虫项目
惟贤箬溪
穷玩Aigithub爬虫
以下是一些基于大语言模型(LLM,LargeLanguageModel)的开源爬虫项目,它们结合了自然语言处理(NLP)技术与爬虫的功能,能在一定程度上提升爬取的智能化和精度。这些项目可以用于自动化抓取、内容提取、数据分析等任务。1.GPT-3WebScraper简介:这是一个基于OpenAIGPT-3模型的网页抓取工具,利用GPT-3的自然语言理解能力来生成有用的爬虫策略、处理网页内容并提取有价
- 深度解析大模型推理框架:原理、应用与实践
百度_开发者中心
人工智能大模型自然语言处理
在当今数据驱动的时代,大模型推理框架已经成为人工智能领域的重要支柱。本文将通过简明扼要、清晰易懂的方式,带领读者深入了解大模型推理框架的原理、应用领域和实践经验,帮助读者更好地掌握这一技术,并在实际工作中发挥其价值。一、大模型推理框架简介大模型推理框架是指一种基于深度学习技术的推理框架,主要用于解决大规模数据集下的复杂问题。该框架通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分析
- 大模型推理框架:从理论到实践的全面解析
百度_开发者中心
人工智能大模型自然语言处理
在数据驱动的时代,深度学习技术已经渗透到各个行业,从图像识别到自然语言处理,从推荐系统到智能客服,其应用无处不在。然而,深度学习模型的训练和推理过程往往涉及大量数据和复杂计算,传统的计算框架难以满足需求。因此,大模型推理框架应运而生,成为解决这一问题的关键。一、大模型推理框架基本概念大模型推理框架是一种基于深度学习技术的推理框架,它通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分
- Python与区块链隐私保护技术:如何在去中心化世界中保障数据安全
Echo_Wish
Python!实战!区块链python去中心化
Python与区块链隐私保护技术:如何在去中心化世界中保障数据安全在区块链世界里,透明性和不可篡改性是两大核心优势,但这也带来了一个悖论——如何在公开账本的同时保障用户隐私?如果你的交易记录对所有人可见,如何防止敏感信息泄露?Python作为区块链开发中最受欢迎的语言之一,提供了强大的工具和库来增强隐私保护。本文将深入探讨区块链的隐私保护技术,并结合Python代码示例,带你了解如何在Web3时代
- 算法之魂:深入剖析数据结构中的七大排序算法
GeminiGlory
数据结构数据结构排序算法算法
目录1.冒泡排序(BubbleSort)2.选择排序(SelectionSort)3.插入排序(InsertionSort)4.希尔排序(ShellSort)5.快速排序(QuickSort)6.归并排序(MergeSort)7.堆排序(HeapSort)在计算机科学领域,排序是一项基础但至关重要的操作。无论你是处理数据库查询结果还是优化搜索效率,了解不同的排序算法及其适用场景都至关重要。本文将介
- Geotrust SSL证书和SymantecSSL证书哪个好?
weixin_34293246
网络
GeoTrust是全球第二大数字证书颁发机构(CA),也是身份认证和信任认证领域的领导者,GeoTrust始终坚持低成本地部署SSL数字证书和实现各种身份认证。其在2001年到2006年占领全球市场25%的市场分额,在全球150多个国家有超过10万个用户在使用GeoTrust的安全产品,为用户的网站信息进行保驾护航。Symantec作为信息安全领域全球领先的解决方案提供商,也是全球最大的信息安全厂
- 大模型学习-让其他电脑可访问本地ollama的模型并进行流式响应
Gratitute_林腾
大模型学习学习语言模型
目录让其他电脑可访问本地ollama流式响应让其他电脑可访问本地ollama默认情况下,其他电脑不能直接访问本地Ollama服务。解决方法:让Ollama监听局域网地址,而不是localhost我们可以让Ollama监听局域网IP,在Ollama服务器上运行:setOLLAMA_HOST=0.0.0.0:11434ollamaserve注意:这种方式只对当前CMD窗口有效,关闭窗口后就会失效。如果
- 计算机集成电板 ppt,史上最全,PCB板和集成电路解析(干货分享)
姚脑师
计算机集成电板ppt
原标题:史上最全,PCB板和集成电路解析(干货分享)目前的电路板,主要由以下组成:线路与图面(Pattern):线路是做为原件之间导通的工具,在设计上会另外设计大铜面作为接地及电源层。线路与图面是同时做出的。介电层(Dielectric):用来保持线路及各层之间的绝缘性,俗称为基材。孔(Throughhole/via):导通孔可使两层次以上的线路彼此导通,较大的导通孔则做为零件插件用,另外有非导通
- 2017安全之势:云、大数据、IoT、人工智能
weixin_34392906
人工智能大数据嵌入式
“新技术让信息系统变成了孙悟空,开始无所不能,但安全仍是它的‘紧箍咒’!怎样解开这个‘紧箍咒’?各路安全厂商各显其能,但似乎路漫漫兮离目标还很遥远。”三未信安董事长张岳公在ZD至顶网《百位意见领袖寄语2017》中说出了这样一句话,我觉着很有道理。安全是一个永恒的话题,如果说它与新的信息技术相生相克也不过分。即便如此,我们更要尽可能的减少安全带来的束缚。2017已经到来,不妨来看看至顶网与业界大咖总
- Stream 流中 flatMap 方法详解
遇见伯灵说
Java开发语言javastream流
1.flatMap()到底是啥?flatMap()是Stream里的中间操作,它的作用可以分两步理解:第一步:对流里的每个元素,先**映射(转换)**成一个Stream。第二步:把多个子流拍平成一个大的扁平流。简单记忆:map()是一对一,flatMap()是一对多。️2.基础用法拆解来看个例子:Listlist=List.of("HelloWorld","JavaStream");Listres
- 大规异构集群 混合并行分布式训练系统,解决算力不均衡问题 HETHUB
爱串门的小马驹
万卡大规模集群大模型训练异构集群大规模集群分布式大模型训练
视频教程在这:3.2大规模异构集群,混合并行分布式系统,解释算力不均衡问题HETHUB_哔哩哔哩_bilibili一、大规模异构集群出现的原因:同一种GPU数量有限难以构建大规模集群:训练大规模模型依赖于大量的计算资源。例如,训练GPT-4模型(1.8万亿个参数)需要25000个A100GPU。用一种GPU加速器构建大规模集群是一个挑战。使用多种类型的GPU加速器构建大规模集群是解决同构GPU加速
- LLM 大模型技术知识最佳学习路径图发布!
AGI-杠哥
学习人工智能语言模型agi自然语言处理
近日,经常有小伙伴私信我,大模型知识太多了,有点懵啊,我该如何学习LLM大模型?今天我们就来剖析下LLM大模型技术知识的学习路径。如果你是一个LLM大模型的“技术小白”,我们建议的学习路径如下:技术交流群前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~我们建了大模型技术与面试交流群
- [从零开始学习JAVA] Stream流
Cools0613
从0开始学Java学习
前言:本文我们将学习Stream流,他就像流水线一样,可以对我们要处理的对象进行逐步处理,最终达到我们想要的效果,是JAVA中的一大好帮手,值得我们了解和掌握。(通常和lambda匿名内部类方法引用相配合)Stram流:Stream流的核心思想是函数式编程(注意返回值必须是对象本身才能),它倡导将数据处理过程看作是一系列的转换操作。这种思想与传统的命令式编程方式不同,传统的命令式编程方式强调对数据
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- Vue前端实现多个条件表格搜索
1724580787
前端vue.jsjavascript
文章目录操作实现效果测试json数据搜索栏条件过滤完成搜索表格栏完整代码操作实现效果在vue文件中通过js代码完成多条件搜索符合条件的table数据,本文使用了element-ui组件创建表格。效果如下图所示:测试json数据[{"test1":"","test2":"","test3":"","test4":""}...//这里只展示一条数据]搜索栏条件过滤完成搜索computed计算方法监视t
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- 模型部署后的版本回滚策略,如何确保服务降级的平滑性?
百态老人
neo4j
模型部署版本回滚策略与平滑服务降级技术体系(2025版)一、核心设计原则与架构模型部署回滚的平滑性需建立在版本隔离性、流量可控性、数据兼容性三大支柱上,结合2025年前沿技术实现多维保障:
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- 【软件架构系列:一文读懂数据流体系结构风格】
youngerwang
学习笔记软件系统架构系统架构架构风格数据流体系结构风格
文章目录一文读懂数据流体系结构风格一、数据流体系结构风格是什么?二、数据流体系结构风格的类型(一)批处理风格(二)连续数据流风格三、数据流体系结构风格的特点(一)数据驱动一切(二)模块化与可复用性强(三)易于并行处理四、数据流体系结构风格的优势(一)维护轻松(二)扩展容易(三)性能优化空间大五、数据流体系结构风格的局限性(一)复杂控制逻辑实现困难(二)数据一致性挑战(三)资源消耗问题六、数据流体系
- yolov8实战第七天——pyqt5-yolov8实现车牌识别系统(参考论文(约7000字)+环境配置+完整部署代码+代码使用说明+训练好的模型)
学术菜鸟小晨
yolov8实战100天pythonYOLOpyqt5车牌识别毕业设计论文
基于pyqt5-yolov8实现车牌识别系统,包括图片车牌识别,视频车牌识别,视频流车牌识别。效果展示(图片检测,检测到的内容添加到历史记录):效果展示(视频检测,视频车辆只会添加一条记录,下文更多实际应用中的优化策略):新增功能:批量图片检测(2024/5/7更新代码)
- 【广告架构day1】爱奇艺广告系统的演进之路:实践中的一些经验
软件真理与光
业务技术架构后端
本文来自爱奇艺的分享孙立伟。近年来爱奇艺快速发展,优质内容层出不穷,爱奇艺广告也随之发展和壮大,广告在线服务同时服务于品牌、中小、DSP等不同客户,形成了可以满足不同需求类型的较为完善的商业广告变现布局,广告库存涵盖视频、信息流、泡泡社交(爱奇艺的社交平台)和开机屏等多种场景。爱奇艺效果广告是2015年开始全新搭建的一个广告投放平台,随着信息流业务的增长,整个投放平台也经历了一次大的架构调整和多次
- 用 pytorch 从零开始创建大语言模型(零):汇总
墨绿色的摆渡人
用pytorch从零开始创建大语言模型pytorch语言模型人工智能
用pytorch从零开始创建大语言模型(零):汇总本系列官方代码库:https://github.com/rasbt/LLMs-from-scratch/tree/main官方书籍:BuildaLargeLanguageModel(FromScratch)本系列文章:用pytorch从零开始创建大语言模型(一):理解大型语言模型用pytorch从零开始创建大语言模型(二):待更新用pytorch从
- Java高并发容器的内核解析:从无锁算法到分段锁的架构演进
猿享天开
开发语言java
《Java高并发容器的内核解析:从无锁算法到分段锁的架构演进》本文将以JUC包核心容器为切入点,深入剖析ConcurrentHashMap在Java8中的64位Hash分段技术,解密LinkedBlockingQueue双锁队列设计的吞吐量秘密,并给出各容器在亿级流量场景下的性能压测对比与选型决策矩阵。一、BlockingQueue体系:生产者-消费者模式的工业级实现1.阻塞队列的四大行为矩阵行为
- AI时代个人财富增长实战指南:从零基础到精通变现的完整路径
A达峰绮
人工智能
(本文基于人工智能技术发展规律,结合互联网经济底层逻辑,为普通从业者构建系统性AI应用框架)一、建立AI认知基础:技术理解与工具掌握技术分类认知人工智能工具分为四大功能模块:自然语言处理(文本生成、对话交互)、计算机视觉(图像视频处理)、数据分析(预测建模)、自动化控制(流程优化)。建议新手首先掌握语言类工具的基础操作,逐步扩展到其他领域。工具操作逻辑通用AI工具通常包含三大核心功能模块:输入界面
- 【大模型书籍PDF】从零开始大模型开发与微调:基于PyTorch与ChatGLM (推荐)_从零开始大模型开发与微调 pdf
喝不喝奶茶丫
pytorch人工智能语言模型大模型转行大模型AI大模型微调
今天又来给大家推荐一本大模型方面的书籍。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。(书籍分享)
- 笔记-LeetCode 787: K 站中转内最便宜的航班
我只是什么都不会而已
算法
题目描述有n个城市通过一些航班连接。给你一个数组flights,其中flights[i]=[fromi,toi,pricei],表示该航班都从城市fromi开始,以价格pricei抵达toi。现在给定所有的城市和航班,以及出发城市src和目的地dst,你的任务是找到出一条最多经过k站中转的路线,使得从src到dst的价格最便宜,并返回该价格。如果不存在这样的路线,则输出-1。代码模板(BFS+最短
- 大语言模型学习路线:从入门到实战
大模型官方资料
语言模型学习人工智能产品经理自然语言处理搜索引擎
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- Java基础面试题学习
PowerCloud
java学习开发语言
转换成自已的语言来回答,来源小林coding、沉默王二以及其它资源和自已改编。1、概念1、说一下Java的特点我认为Java有很多特点首先是平台无关性:Java可以实现一次编译到处运行,因为Java的编译器将源代码编译成字节码,使得该字节码可以在任意装有JVM的操作系统上运行。其次是面向对象的性质:Java是面向对象编程语言,这种OOP的特性使得代码易于维护和重用。主要源于封装继承多态这三大特性。
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/