9面向对象多态&包&final&权限修饰符&代码块&抽象类&接口&内部类

面向对象进阶(多态&包&final&权限修饰符&代码块)

  • 多态
  • final
  • 权限修饰符
  • 代码块

教学目标

  • 能够说出使用多态的前提条件

  • 理解多态的向上转型

  • 理解多态的向下转型

  • 能够知道多态的使用场景

  • 包的作用

  • public和private权限修饰符的作用

  • 描述final修饰的类的特点

  • 描述final修饰的方法的特点

  • 描述final修饰的变量的特点

第一章 多态

1.1 多态的形式

多态是继封装、继承之后,面向对象的第三大特性。

多态是出现在继承或者实现关系中的

多态体现的格式

父类类型 变量名 = new 子类/实现类构造器;
变量名.方法名();

多态的前提:有继承关系,子类对象是可以赋值给父类类型的变量。例如Animal是一个动物类型,而Cat是一个猫类型。Cat继承了Animal,Cat对象也是Animal类型,自然可以赋值给父类类型的变量。

1.2 多态的使用场景

如果没有多态,在下图中register方法只能传递学生对象,其他的Teacher和administrator对象是无法传递给register方法方法的,在这种情况下,只能定义三个不同的register方法分别接收学生,老师和管理员。

有了多态之后,方法的形参就可以定义为共同的父类Person。

要注意的是:

  • 当一个方法的形参是一个类,我们可以传递这个类所有的子类对象。
  • 当一个方法的形参是一个接口,我们可以传递这个接口所有的实现类对象(后面会学)。
  • 而且多态还可以根据传递的不同对象来调用不同类中的方法。

代码示例:

父类:
public class Person {
    private String name;
    private int age;

    空参构造
    带全部参数的构造
    get和set方法

    public void show(){
        System.out.println(name + ", " + age);
    }
}

子类1public class Administrator extends Person {
    @Override
    public void show() {
        System.out.println("管理员的信息为:" + getName() + ", " + getAge());
    }
}

子类2public class Student extends Person{

    @Override
    public void show() {
        System.out.println("学生的信息为:" + getName() + ", " + getAge());
    }
}

子类3public class Teacher extends Person{

    @Override
    public void show() {
        System.out.println("老师的信息为:" + getName() + ", " + getAge());
    }
}

测试类:
public class Test {
    public static void main(String[] args) {
        //创建三个对象,并调用register方法

        Student s = new Student();
        s.setName("张三");
        s.setAge(18);


        Teacher t = new Teacher();
        t.setName("王建国");
        t.setAge(30);

        Administrator admin = new Administrator();
        admin.setName("管理员");
        admin.setAge(35);



        register(s);
        register(t);
        register(admin);


    }



    //这个方法既能接收老师,又能接收学生,还能接收管理员
    //只能把参数写成这三个类型的父类
    public static void register(Person p){
        p.show();
    }
}

1.3 多态的定义和前提

多态: 是指同一行为,具有多个不同表现形式。

从上面案例可以看出,Cat和Dog都是动物,都是吃这一行为,但是出现的效果(表现形式)是不一样的。

前提【重点】

  1. 有继承或者实现关系

  2. 方法的重写【意义体现:不重写,无意义】

  3. 父类引用指向子类对象【格式体现】

    父类类型:指子类对象继承的父类类型,或者实现的父接口类型。

1.4 多态的运行特点

调用成员变量时:编译看左边,运行看左边

调用成员方法时:编译看左边,运行看右边

代码示例:

Fu f = new Zi()//编译看左边的父类中有没有name这个属性,没有就报错
//在实际运行的时候,把父类name属性的值打印出来
System.out.println(f.name);
//编译看左边的父类中有没有show这个方法,没有就报错
//在实际运行的时候,运行的是子类中的show方法
f.show();

1.5 多态的弊端

我们已经知道多态编译阶段是看左边父类类型的,如果子类有些独有的功能,此时多态的写法就无法访问子类独有功能了

class Animal{
    public  void eat()System.out.println("动物吃东西!")}
class Cat extends Animal {  
    public void eat() {  
        System.out.println("吃鱼");  
    }  
   
    public void catchMouse() {  
        System.out.println("抓老鼠");  
    }  
}  

class Dog extends Animal {  
    public void eat() {  
        System.out.println("吃骨头");  
    }  
}

class Test{
    public static void main(String[] args){
        Animal a = new Cat();
        a.eat();
        a.catchMouse();//编译报错,编译看左边,Animal没有这个方法
    }
}

1.6 引用类型转换

1.6.1 为什么要转型

多态的写法就无法访问子类独有功能了。

当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误。也就是说,不能调用子类拥有,而父类没有的方法。编译都错误,更别说运行了。这也是多态给我们带来的一点"小麻烦"。所以,想要调用子类特有的方法,必须做向下转型。

回顾基本数据类型转换

  • 自动转换: 范围小的赋值给范围大的.自动完成:double d = 5;
  • 强制转换: 范围大的赋值给范围小的,强制转换:int i = (int)3.14

​ 多态的转型分为向上转型(自动转换)与向下转型(强制转换)两种。

1.6.2 向上转型(自动转换)

  • 向上转型:多态本身是子类类型向父类类型向上转换(自动转换)的过程,这个过程是默认的。
    当父类引用指向一个子类对象时,便是向上转型。
    使用格式:
父类类型  变量名 = new 子类类型();
如:Animal a = new Cat();

**原因是:父类类型相对与子类来说是大范围的类型,Animal是动物类,是父类类型。Cat是猫类,是子类类型。Animal类型的范围当然很大,包含一切动物。**所以子类范围小可以直接自动转型给父类类型的变量。

1.6.3 向下转型(强制转换)

  • 向下转型:父类类型向子类类型向下转换的过程,这个过程是强制的。
    一个已经向上转型的子类对象,将父类引用转为子类引用,可以使用强制类型转换的格式,便是向下转型。

使用格式:

子类类型 变量名 = (子类类型) 父类变量名;:Aniaml a = new Cat();
   Cat c =(Cat) a;  

1.6.4 案例演示

当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误。也就是说,不能调用子类拥有,而父类没有的方法。编译都错误,更别说运行了。这也是多态给我们带来的一点"小麻烦"。所以,想要调用子类特有的方法,必须做向下转型。

转型演示,代码如下:

定义类:

abstract class Animal {  
    abstract void eat();  
}  

class Cat extends Animal {  
    public void eat() {  
        System.out.println("吃鱼");  
    }  
    public void catchMouse() {  
        System.out.println("抓老鼠");  
    }  
}  

class Dog extends Animal {  
    public void eat() {  
        System.out.println("吃骨头");  
    }  
    public void watchHouse() {  
        System.out.println("看家");  
    }  
}

定义测试类:

public class Test {
    public static void main(String[] args) {
        // 向上转型  
        Animal a = new Cat();  
        a.eat(); 				// 调用的是 Cat 的 eat

        // 向下转型  
        Cat c = (Cat)a;       
        c.catchMouse(); 		// 调用的是 Cat 的 catchMouse
    }  
}

1.6.5 转型的异常

转型的过程中,一不小心就会遇到这样的问题,请看如下代码:

public class Test {
    public static void main(String[] args) {
        // 向上转型  
        Animal a = new Cat();  
        a.eat();               // 调用的是 Cat 的 eat

        // 向下转型  
        Dog d = (Dog)a;       
        d.watchHouse();        // 调用的是 Dog 的 watchHouse 【运行报错】
    }  
}

这段代码可以通过编译,但是运行时,却报出了 ClassCastException ,类型转换异常!这是因为,明明创建了Cat类型对象,运行时,当然不能转换成Dog对象的。

1.6.6 instanceof关键字

为了避免ClassCastException的发生,Java提供了 instanceof 关键字,给引用变量做类型的校验,格式如下:

变量名 instanceof 数据类型 
如果变量属于该数据类型或者其子类类型,返回true。
如果变量不属于该数据类型或者其子类类型,返回false

所以,转换前,我们最好先做一个判断,代码如下:

public class Test {
    public static void main(String[] args) {
        // 向上转型  
        Animal a = new Cat();  
        a.eat();               // 调用的是 Cat 的 eat

        // 向下转型  
        if (a instanceof Cat){
            Cat c = (Cat)a;       
            c.catchMouse();        // 调用的是 Cat 的 catchMouse
        } else if (a instanceof Dog){
            Dog d = (Dog)a;       
            d.watchHouse();       // 调用的是 Dog 的 watchHouse
        }
    }  
}

1.6.7 instanceof新特性

JDK14的时候提出了新特性,把判断和强转合并成了一行

//新特性
//先判断a是否为Dog类型,如果是,则强转成Dog类型,转换之后变量名为d
//如果不是,则不强转,结果直接是false
if(a instanceof Dog d){
    d.lookHome();
}else if(a instanceof Cat c){
    c.catchMouse();
}else{
    System.out.println("没有这个类型,无法转换");
}

1.7 综合练习

需求:根据需求完成代码:
	1.定义狗类
		属性:
			年龄,颜色
		行为:
			eat(String something)(something表示吃的东西)
			看家lookHome方法(无参数)
2.定义猫类
	属性:
		年龄,颜色
	行为:
		eat(String something)方法(something表示吃的东西)
		逮老鼠catchMouse方法(无参数)
3.定义Person//饲养员
	属性:
		姓名,年龄
	行为:
		keepPet(Dog dog,String something)方法
			功能:喂养宠物狗,something表示喂养的东西
	行为:
		keepPet(Cat cat,String something)方法
			功能:喂养宠物猫,something表示喂养的东西
	生成空参有参构造,set和get方法  
4.定义测试类(完成以下打印效果):
	keepPet(Dog dog,String somethind)方法打印内容如下:
		年龄为30岁的老王养了一只黑颜色的2岁的狗
		2岁的黑颜色的狗两只前腿死死的抱住骨头猛吃
	keepPet(Cat cat,String somethind)方法打印内容如下:
		年龄为25岁的老李养了一只灰颜色的3岁的猫
		3岁的灰颜色的猫眯着眼睛侧着头吃鱼
5.思考:		
	1.Dog和Cat都是Animal的子类,以上案例中针对不同的动物,定义了不同的keepPet方法,过于繁琐,能否简化,并体会简化后的好处?
	2.Dog和Cat虽然都是Animal的子类,但是都有其特有方法,能否想办法在keepPet中调用特有方法?

代码示例:

//动物类(父类)
public class Animal {
    private int age;
    private String color;


    public Animal() {
    }

    public Animal(int age, String color) {
        this.age = age;
        this.color = color;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public String getColor() {
        return color;
    }

    public void setColor(String color) {
        this.color = color;
    }

    public void eat(String something){
        System.out.println("动物在吃" + something);
    }
}

//猫类(子类)
public class Cat extends Animal {

    public Cat() {
    }

    public Cat(int age, String color) {
        super(age, color);
    }

    @Override
    public void eat(String something) {
        System.out.println(getAge() + "岁的" + getColor() + "颜色的猫眯着眼睛侧着头吃" + something);
    }

    public void catchMouse(){
        System.out.println("猫抓老鼠");
    }

}

//狗类(子类)
public class Dog extends Animal {
    public Dog() {
    }

    public Dog(int age, String color) {
        super(age, color);
    }

    //行为
    //eat(String something)(something表示吃的东西)
    //看家lookHome方法(无参数)
    @Override
    public void eat(String something) {
        System.out.println(getAge() + "岁的" + getColor() + "颜色的狗两只前腿死死的抱住" + something + "猛吃");
    }

    public void lookHome(){
        System.out.println("狗在看家");
    }
}


//饲养员类
public class Person {
    private String name;
    private int age;

    public Person() {
    }

    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    //饲养狗
   /* public void keepPet(Dog dog, String something) {
        System.out.println("年龄为" + age + "岁的" + name + "养了一只" + dog.getColor() + "颜色的" + dog.getAge() + "岁的狗");
        dog.eat(something);
    }

    //饲养猫
    public void keepPet(Cat cat, String something) {
        System.out.println("年龄为" + age + "岁的" + name + "养了一只" + cat.getColor() + "颜色的" + cat.getAge() + "岁的猫");
        cat.eat(something);
    }*/


    //想要一个方法,能接收所有的动物,包括猫,包括狗
    //方法的形参:可以写这些类的父类 Animal
    public void keepPet(Animal a, String something) {
        if(a instanceof Dog d){
            System.out.println("年龄为" + age + "岁的" + name + "养了一只" + a.getColor() + "颜色的" + a.getAge() + "岁的狗");
            d.eat(something);
        }else if(a instanceof Cat c){
            System.out.println("年龄为" + age + "岁的" + name + "养了一只" + c.getColor() + "颜色的" + c.getAge() + "岁的猫");
            c.eat(something);
        }else{
            System.out.println("没有这种动物");
        }
    }
}

//测试类
public class Test {
    public static void main(String[] args) {
        //创建对象并调用方法
       /* Person p1 = new Person("老王",30);
        Dog d = new Dog(2,"黑");
        p1.keepPet(d,"骨头");


        Person p2 = new Person("老李",25);
        Cat c = new Cat(3,"灰");
        p2.keepPet(c,"鱼");*/


        //创建饲养员的对象
        Person p = new Person("老王",30);
        Dog d = new Dog(2,"黑");
        Cat c = new Cat(3,"灰");
        p.keepPet(d,"骨头");
        p.keepPet(c,"鱼");

    }
}

第二章 包

2.1 包

​ 包在操作系统中其实就是一个文件夹。包是用来分门别类的管理技术,不同的技术类放在不同的包下,方便管理和维护。

在IDEA项目中,建包的操作如下:

包名的命名规范

路径名.路径名.xxx.xxx
// 例如:com.itheima.oa
  • 包名一般是公司域名的倒写。例如:黑马是www.itheima.com,包名就可以定义成com.itheima.技术名称。
  • 包名必须用”.“连接。
  • 包名的每个路径名必须是一个合法的标识符,而且不能是Java的关键字。

2.2 导包

什么时候需要导包?

​ 情况一:在使用Java中提供的非核心包中的类时

​ 情况二:使用自己写的其他包中的类时

什么时候不需要导包?

​ 情况一:在使用Java核心包(java.lang)中的类时

​ 情况二:在使用自己写的同一个包中的类时

2.3 使用不同包下的相同类怎么办?

假设demo1和demo2中都有一个Student该如何使用?

代码示例:

//使用全类名的形式即可。
//全类名:包名 + 类名
//拷贝全类名的快捷键:选中类名crtl + shift + alt + c 或者用鼠标点copy,再点击copy Reference
com.itheima.homework.demo1.Student s1 = new com.itheima.homework.demo1.Student();
com.itheima.homework.demo2.Student s2 = new com.itheima.homework.demo2.Student();

第三章 权限修饰符

3.1 权限修饰符

​ 在Java中提供了四种访问权限,使用不同的访问权限修饰符修饰时,被修饰的内容会有不同的访问权限,我们之前已经学习过了public 和 private,接下来我们研究一下protected和默认修饰符的作用。

  • public:公共的,所有地方都可以访问。

  • protected:本类 ,本包,其他包中的子类都可以访问。

  • 默认(没有修饰符):本类 ,本包可以访问。

    注意:默认是空着不写,不是default

  • private:私有的,当前类可以访问。
    public > protected > 默认 > private

3.2 不同权限的访问能力

public protected 默认 private
同一类中
同一包中的类
不同包的子类
不同包中的无关类

可见,public具有最大权限。private则是最小权限。

编写代码时,如果没有特殊的考虑,建议这样使用权限:

  • 成员变量使用private ,隐藏细节。
  • 构造方法使用 public ,方便创建对象。
  • 成员方法使用public ,方便调用方法。

小贴士:不加权限修饰符,就是默认权限

第四章 final关键字

4.1 概述

​ 学习了继承后,我们知道,子类可以在父类的基础上改写父类内容,比如,方法重写。

如果有一个方法我不想别人去改写里面内容,该怎么办呢?

Java提供了final 关键字,表示修饰的内容不可变。

  • final: 不可改变,最终的含义。可以用于修饰类、方法和变量。
    • 类:被修饰的类,不能被继承。
    • 方法:被修饰的方法,不能被重写。
    • 变量:被修饰的变量,有且仅能被赋值一次。

4.2 使用方式

4.2.1 修饰类

final修饰的类,不能被继承。

格式如下:

final class 类名 {
}

代码:

final class Fu {
}
// class Zi extends Fu {} // 报错,不能继承final的类

查询API发现像 public final class Stringpublic final class Mathpublic final class Scanner 等,很多我们学习过的类,都是被final修饰的,目的就是供我们使用,而不让我们所以改变其内容。

4.2.2 修饰方法

final修饰的方法,不能被重写。
格式如下:

修饰符 final 返回值类型 方法名(参数列表){
    //方法体
}

代码:

class Fu2 {
	final public void show1() {
		System.out.println("Fu2 show1");
	}
	public void show2() {
		System.out.println("Fu2 show2");
	}
}

class Zi2 extends Fu2 {
//	@Override
//	public void show1() {
//		System.out.println("Zi2 show1");
//	}
	@Override
	public void show2() {
		System.out.println("Zi2 show2");
	}
}

4.2.3 修饰变量-局部变量

  1. 局部变量——基本类型
    基本类型的局部变量,被final修饰后,只能赋值一次,不能再更改。代码如下:
public class FinalDemo1 {
    public static void main(String[] args) {
        // 声明变量,使用final修饰
        final int a;
        // 第一次赋值 
        a = 10;
        // 第二次赋值
        a = 20; // 报错,不可重新赋值

        // 声明变量,直接赋值,使用final修饰
        final int b = 10;
        // 第二次赋值
        b = 20; // 报错,不可重新赋值
    }
}

思考,下面两种写法,哪种可以通过编译?

写法1:

final int c = 0;
for (int i = 0; i < 10; i++) {
    c = i;
    System.out.println(c);
}

写法2:

for (int i = 0; i < 10; i++) {
    final int c = i;
    System.out.println(c);
}

根据 final 的定义,写法1报错!写法2,为什么通过编译呢?因为每次循环,都是一次新的变量c。这也是大家需要注意的地方。

4.2.4 修饰变量-成员变量

成员变量涉及到初始化的问题,初始化方式有显示初始化和构造方法初始化,只能选择其中一个:

  • 显示初始化(在定义成员变量的时候立马赋值)(常用);
public class Student {
    final int num = 10;
}
  • 构造方法初始化(在构造方法中赋值一次)(不常用,了解即可)。

    注意:每个构造方法中都要赋值一次!

public class Student {
    final int num = 10;
    final int num2;

    public Student() {
        this.num2 = 20;
//     this.num2 = 20;
    }
    
     public Student(String name) {
        this.num2 = 20;
//     this.num2 = 20;
    }
}

被final修饰的常量名称,一般都有书写规范,所有字母都大写

面向对象进阶(抽象类&接口&内部类)

今日内容

  • 抽象类
  • 接口
  • 内部类

教学目标

  • 能够写出抽象类的格式
  • 能够写出抽象方法的格式
  • 能说出抽象类的应用场景
  • 写出定义接口的格式
  • 写出实现接口的格式
  • 说出接口中成员的特点
  • 能说出接口的应用场景
  • 能说出接口中为什么会出现带有方法体的方法
  • 能完成适配器设计模式

第一章 抽象类

1.1 概述

1.1.1 抽象类引入

​ 父类中的方法,被它的子类们重写,子类各自的实现都不尽相同。那么父类的方法声明和方法主体,只有声明还有意义,而方法主体则没有存在的意义了(因为子类对象会调用自己重写的方法)。换句话说,父类可能知道子类应该有哪个功能,但是功能具体怎么实现父类是不清楚的(由子类自己决定),父类只需要提供一个没有方法体的定义即可,具体实现交给子类自己去实现。我们把没有方法体的方法称为抽象方法。Java语法规定,包含抽象方法的类就是抽象类

  • 抽象方法 : 没有方法体的方法。
  • 抽象类:包含抽象方法的类。

1.2 abstract使用格式

abstract是抽象的意思,用于修饰方法方法和类,修饰的方法是抽象方法,修饰的类是抽象类。

1.2.1 抽象方法

使用abstract 关键字修饰方法,该方法就成了抽象方法,抽象方法只包含一个方法名,而没有方法体。

定义格式:

修饰符 abstract 返回值类型 方法名 (参数列表)

代码举例:

public abstract void run()

1.2.2 抽象类

如果一个类包含抽象方法,那么该类必须是抽象类。注意:抽象类不一定有抽象方法,但是有抽象方法的类必须定义成抽象类。

定义格式:

abstract class 类名字 { 
  
}

代码举例:

public abstract class Animal {
    public abstract void run()}

1.2.3 抽象类的使用

要求:继承抽象类的子类必须重写父类所有的抽象方法。否则,该子类也必须声明为抽象类。

代码举例:

// 父类,抽象类
abstract class Employee {
	private String id;
	private String name;
	private double salary;
	
	public Employee() {
	}
	
	public Employee(String id, String name, double salary) {
		this.id = id;
		this.name = name;
		this.salary = salary;
	}
	
	// 抽象方法
	// 抽象方法必须要放在抽象类中
	abstract public void work();
}

// 定义一个子类继承抽象类
class Manager extends Employee {
	public Manager() {
	}
	public Manager(String id, String name, double salary) {
		super(id, name, salary);
	}
	// 2.重写父类的抽象方法
	@Override
	public void work() {
		System.out.println("管理其他人");
	}
}

// 定义一个子类继承抽象类
class Cook extends Employee {
	public Cook() {
	}
	public Cook(String id, String name, double salary) {
		super(id, name, salary);
	}
	@Override
	public void work() {
		System.out.println("厨师炒菜多加点盐...");
	}
}

// 测试类
public class Demo10 {
	public static void main(String[] args) {
		// 创建抽象类,抽象类不能创建对象
		// 假设抽象类让我们创建对象,里面的抽象方法没有方法体,无法执行.所以不让我们创建对象
//		Employee e = new Employee();
//		e.work();
		
		// 3.创建子类
		Manager m = new Manager();
		m.work();
		
		Cook c = new Cook("ap002", "库克", 1);
		c.work();
	}
}

此时的方法重写,是子类对父类抽象方法的完成实现,我们将这种方法重写的操作,也叫做实现方法

1.3 抽象类的特征

抽象类的特征总结起来可以说是 有得有失

有得:抽象类得到了拥有抽象方法的能力。

有失:抽象类失去了创建对象的能力。

其他成员(构造方法,实例方法,静态方法等)抽象类都是具备的。

1.4 抽象类的细节

不需要背,只要当idea报错之后,知道如何修改即可。

关于抽象类的使用,以下为语法上要注意的细节,虽然条目较多,但若理解了抽象的本质,无需死记硬背。

  1. 抽象类不能创建对象,如果创建,编译无法通过而报错。只能创建其非抽象子类的对象。

    理解:假设创建了抽象类的对象,调用抽象的方法,而抽象方法没有具体的方法体,没有意义。

  2. 抽象类中,可以有构造方法,是供子类创建对象时,初始化父类成员使用的。

    理解:子类的构造方法中,有默认的super(),需要访问父类构造方法。

  3. 抽象类中,不一定包含抽象方法,但是有抽象方法的类必定是抽象类。

    理解:未包含抽象方法的抽象类,目的就是不想让调用者创建该类对象,通常用于某些特殊的类结构设计。

  4. 抽象类的子类,必须重写抽象父类中所有的抽象方法,否则子类也必须定义成抽象类,编译无法通过而报错。

    理解:假设不重写所有抽象方法,则类中可能包含抽象方法。那么创建对象后,调用抽象的方法,没有意义。

  5. 抽象类存在的意义是为了被子类继承。

    理解:抽象类中已经实现的是模板中确定的成员,抽象类不确定如何实现的定义成抽象方法,交给具体的子类去实现。

1.5 抽象类存在的意义

​ 抽象类存在的意义是为了被子类继承,否则抽象类将毫无意义。抽象类可以强制让子类,一定要按照规定的格式进行重写。

第二章 接口

2.1 概述

我们已经学完了抽象类,抽象类中可以用抽象方法,也可以有普通方法,构造方法,成员变量等。那么什么是接口呢?接口是更加彻底的抽象,JDK7之前,包括JDK7,接口中全部是抽象方法。接口同样是不能创建对象的

2.2 定义格式

//接口的定义格式:
interface 接口名称{
    // 抽象方法
}

// 接口的声明:interface
// 接口名称:首字母大写,满足“驼峰模式”

2.3 接口成分的特点

在JDK7,包括JDK7之前,接口中的只有包含:抽象方法和常量

2.3.1.抽象方法

​ 注意:接口中的抽象方法默认会自动加上public abstract修饰程序员无需自己手写!!
​ 按照规范:以后接口中的抽象方法建议不要写上public abstract。因为没有必要啊,默认会加上。

2.3.2 常量

在接口中定义的成员变量默认会加上: public static final修饰。也就是说在接口中定义的成员变量实际上是一个常量。这里是使用public static final修饰后,变量值就不可被修改,并且是静态化的变量可以直接用接口名访问,所以也叫常量。常量必须要给初始值。常量命名规范建议字母全部大写,多个单词用下划线连接。

2.3.3 案例演示

public interface InterF {
    // 抽象方法!
    //    public abstract void run();
    void run();

    //    public abstract String getName();
    String getName();

    //    public abstract int add(int a , int b);
    int add(int a , int b);


    // 它的最终写法是:
    // public static final int AGE = 12 ;
    int AGE  = 12; //常量
    String SCHOOL_NAME = "黑马程序员";

}

2.4 基本的实现

2.4.1 实现接口的概述

类与接口的关系为实现关系,即类实现接口,该类可以称为接口的实现类,也可以称为接口的子类。实现的动作类似继承,格式相仿,只是关键字不同,实现使用 implements关键字。

2.4.2 实现接口的格式

/**接口的实现:
    在Java中接口是被实现的,实现接口的类称为实现类。
    实现类的格式:*/
class 类名 implements 接口1,接口2,接口3...{

}

从上面格式可以看出,接口是可以被多实现的。大家可以想一想为什么呢?

2.4.3 类实现接口的要求和意义

  1. 必须重写实现的全部接口中所有抽象方法。
  2. 如果一个类实现了接口,但是没有重写完全部接口的全部抽象方法,这个类也必须定义成抽象类。
  3. 意义:接口体现的是一种规范,接口对实现类是一种强制性的约束,要么全部完成接口申明的功能,要么自己也定义成抽象类。这正是一种强制性的规范。

2.4.4 类与接口基本实现案例

假如我们定义一个运动员的接口(规范),代码如下:

/**
   接口:接口体现的是规范。
 * */
public interface SportMan {
    void run(); // 抽象方法,跑步。
    void law(); // 抽象方法,遵守法律。
    String compittion(String project);  // 抽象方法,比赛。
}

接下来定义一个乒乓球运动员类,实现接口,实现接口的实现类代码如下:

package com.itheima._03接口的实现;
/**
 * 接口的实现:
 *    在Java中接口是被实现的,实现接口的类称为实现类。
 *    实现类的格式:
 *      class 类名 implements 接口1,接口2,接口3...{
 *
 *
 *      }
 * */
public class PingPongMan  implements SportMan {
    @Override
    public void run() {
        System.out.println("乒乓球运动员稍微跑一下!!");
    }

    @Override
    public void law() {
        System.out.println("乒乓球运动员守法!");
    }

    @Override
    public String compittion(String project) {
        return "参加"+project+"得金牌!";
    }
}

测试代码

public class TestMain {
    public static void main(String[] args) {
        // 创建实现类对象。
        PingPongMan zjk = new PingPongMan();
        zjk.run();
        zjk.law();
        System.out.println(zjk.compittion("全球乒乓球比赛"));

    }
}

2.4.5 类与接口的多实现案例

类与接口之间的关系是多实现的,一个类可以同时实现多个接口。

首先我们先定义两个接口,代码如下:

/** 法律规范:接口*/
public interface Law {
    void rule();
}

/** 这一个运动员的规范:接口*/
public interface SportMan {
    void run();
}

然后定义一个实现类:

/**
 * Java中接口是可以被多实现的:
 *    一个类可以实现多个接口: Law, SportMan
 *
 * */
public class JumpMan implements Law ,SportMan {
    @Override
    public void rule() {
        System.out.println("尊长守法");
    }

    @Override
    public void run() {
        System.out.println("训练跑步!");
    }
}

从上面可以看出类与接口之间是可以多实现的,我们可以理解成实现多个规范,这是合理的。

2.5 接口与接口的多继承

Java中,接口与接口之间是可以多继承的:也就是一个接口可以同时继承多个接口。大家一定要注意:

类与接口是实现关系

接口与接口是继承关系

接口继承接口就是把其他接口的抽象方法与本接口进行了合并。

案例演示:

public interface Abc {
    void go();
    void test();
}

/** 法律规范:接口*/
public interface Law {
    void rule();
    void test();
}

 *
 *  总结:
 *     接口与类之间是多实现的。
 *     接口与接口之间是多继承的。
 * */
public interface SportMan extends Law , Abc {
    void run();
}

2.6扩展:接口的细节

不需要背,只要当idea报错之后,知道如何修改即可。

关于接口的使用,以下为语法上要注意的细节,虽然条目较多,但若理解了抽象的本质,无需死记硬背。

  1. 当两个接口中存在相同抽象方法的时候,该怎么办?

只要重写一次即可。此时重写的方法,既表示重写1接口的,也表示重写2接口的。

  1. 实现类能不能继承A类的时候,同时实现其他接口呢?

继承的父类,就好比是亲爸爸一样
实现的接口,就好比是干爹一样
可以继承一个类的同时,再实现多个接口,只不过,要把接口里面所有的抽象方法,全部实现。

  1. 实现类能不能继承一个抽象类的时候,同时实现其他接口呢?

实现类可以继承一个抽象类的同时,再实现其他多个接口,只不过要把里面所有的抽象方法全部重写。

  1. 实现类Zi,实现了一个接口,还继承了一个Fu类。假设在接口中有一个方法,父类中也有一个相同的方法。子类如何操作呢?

处理办法一:如果父类中的方法体,能满足当前业务的需求,在子类中可以不用重写。
处理办法二:如果父类中的方法体,不能满足当前业务的需求,需要在子类中重写。

  1. 如果一个接口中,有10个抽象方法,但是我在实现类中,只需要用其中一个,该怎么办?

可以在接口跟实现类中间,新建一个中间类(适配器类)
让这个适配器类去实现接口,对接口里面的所有的方法做空重写。
让子类继承这个适配器类,想要用到哪个方法,就重写哪个方法。
因为中间类没有什么实际的意义,所以一般会把中间类定义为抽象的,不让外界创建对象

第三章 内部类

3.1 概述

3.1.1 什么是内部类

将一个类A定义在另一个类B里面,里面的那个类A就称为内部类,B则称为外部类。可以把内部类理解成寄生,外部类理解成宿主。

3.1.2 什么时候使用内部类

一个事物内部还有一个独立的事物,内部的事物脱离外部的事物无法独立使用

  1. 人里面有一颗心脏。
  2. 汽车内部有一个发动机。
  3. 为了实现更好的封装性。

3.2 内部类的分类

按定义的位置来分

  1. 成员内部内,类定义在了成员位置 (类中方法外称为成员位置,无static修饰的内部类)
  2. 静态内部类,类定义在了成员位置 (类中方法外称为成员位置,有static修饰的内部类)
  3. 局部内部类,类定义在方法内
  4. 匿名内部类,没有名字的内部类,可以在方法中,也可以在类中方法外。

3.3 成员内部类

成员内部类特点

  • 无static修饰的内部类,属于外部类对象的。
  • 宿主:外部类对象。

内部类的使用格式

 外部类.内部类。 // 访问内部类的类型都是用 外部类.内部类

获取成员内部类对象的两种方式

方式一:外部直接创建成员内部类的对象

外部类.内部类 变量 = new 外部类().new 内部类();

方式二:在外部类中定义一个方法提供内部类的对象

案例演示

方式一:
public class Test {
    public static void main(String[] args) {
        //  宿主:外部类对象。
       // Outer out = new Outer();
        // 创建内部类对象。
        Outer.Inner oi = new Outer().new Inner();
        oi.method();
    }
}

class Outer {
    // 成员内部类,属于外部类对象的。
    // 拓展:成员内部类不能定义静态成员。
    public class Inner{
        // 这里面的东西与类是完全一样的。
        public void method(){
            System.out.println("内部类中的方法被调用了");
        }
    }
}


方式二:
public class Outer {
    String name;
    private class Inner{
        static int a = 10;
    }
    public Inner getInstance(){
        return new Inner();
    }
}

public class Test {
    public static void main(String[] args) {
        Outer o = new Outer();
        System.out.println(o.getInstance());


    }
}

3.4 成员内部类的细节

编写成员内部类的注意点:

  1. 成员内部类可以被一些修饰符所修饰,比如: private,默认,protected,public,static等
  2. 在成员内部类里面,JDK16之前不能定义静态变量,JDK16开始才可以定义静态变量。
  3. 创建内部类对象时,对象中有一个隐含的Outer.this记录外部类对象的地址值。(请参见3.6节的内存图)

详解:

​ 内部类被private修饰,外界无法直接获取内部类的对象,只能通过3.3节中的方式二获取内部类的对象

​ 被其他权限修饰符修饰的内部类一般用3.3节中的方式一直接获取内部类的对象

​ 内部类被static修饰是成员内部类中的特殊情况,叫做静态内部类下面单独学习。

​ 内部类如果想要访问外部类的成员变量,外部类的变量必须用final修饰,JDK8以前必须手动写final,JDK8之后不需要手动写,JDK默认加上。

3.5 成员内部类面试题

请在?地方向上相应代码,以达到输出的内容

注意:内部类访问外部类对象的格式是:外部类名.this

public class Test {
    public static void main(String[] args) {
        Outer.inner oi = new Outer().new inner();
        oi.method();
    }
}

class Outer {	// 外部类
    private int a = 30;

    // 在成员位置定义一个类
    class inner {
        private int a = 20;

        public void method() {
            int a = 10;
            System.out.println(???);	// 10   答案:a
            System.out.println(???);	// 20	答案:this.a
            System.out.println(???);	// 30	答案:Outer.this.a
        }
    }
}

3.6 成员内部类内存图

3.7 静态内部类

静态内部类特点

  • 静态内部类是一种特殊的成员内部类。
  • 有static修饰,属于外部类本身的。
  • 总结:静态内部类与其他类的用法完全一样。只是访问的时候需要加上外部类.内部类。
  • 拓展1:静态内部类可以直接访问外部类的静态成员。
  • 拓展2:静态内部类不可以直接访问外部类的非静态成员,如果要访问需要创建外部类的对象。
  • 拓展3:静态内部类中没有银行的Outer.this。

内部类的使用格式

外部类.内部类。

静态内部类对象的创建格式

外部类.内部类  变量 = new  外部类.内部类构造器;

调用方法的格式:

  • 调用非静态方法的格式:先创建对象,用对象调用
  • 调用静态方法的格式:外部类名.内部类名.方法名();

案例演示

// 外部类:Outer01
class Outer01{
    private static  String sc_name = "黑马程序";
    // 内部类: Inner01
    public static class Inner01{
        // 这里面的东西与类是完全一样的。
        private String name;
        public Inner01(String name) {
            this.name = name;
        }
        public void showName(){
            System.out.println(this.name);
            // 拓展:静态内部类可以直接访问外部类的静态成员。
            System.out.println(sc_name);
        }
    }
}

public class InnerClassDemo01 {
    public static void main(String[] args) {
        // 创建静态内部类对象。
        // 外部类.内部类  变量 = new  外部类.内部类构造器;
        Outer01.Inner01 in  = new Outer01.Inner01("张三");
        in.showName();
    }
}

3.8 局部内部类

  • 局部内部类 :定义在方法中的类。

定义格式:

class 外部类名 {
	数据类型 变量名;
	
	修饰符 返回值类型 方法名(参数列表) {
		// …
		class 内部类 {
			// 成员变量
			// 成员方法
		}
	}
}

3.9 匿名内部类【重点】

3.9.1 概述

匿名内部类 :是内部类的简化写法。他是一个隐含了名字的内部类。开发中,最常用到的内部类就是匿名内部类了。

3.9.2 格式

new 类名或者接口名() {
     重写方法;
};

包含了:

  • 继承或者实现关系

  • 方法重写

  • 创建对象

所以从语法上来讲,这个整体其实是匿名内部类对象

3.9.2 什么时候用到匿名内部类

实际上,如果我们希望定义一个只要使用一次的类,就可考虑使用匿名内部类。匿名内部类的本质作用

是为了简化代码

之前我们使用接口时,似乎得做如下几步操作:

  1. 定义子类
  2. 重写接口中的方法
  3. 创建子类对象
  4. 调用重写后的方法
interface Swim {
    public abstract void swimming();
}

// 1. 定义接口的实现类
class Student implements Swim {
    // 2. 重写抽象方法
    @Override
    public void swimming() {
        System.out.println("狗刨式...");
    }
}

public class Test {
    public static void main(String[] args) {
        // 3. 创建实现类对象
        Student s = new Student();
        // 4. 调用方法
        s.swimming();
    }
}

我们的目的,最终只是为了调用方法,那么能不能简化一下,把以上四步合成一步呢?匿名内部类就是做这样的快捷方式。

3.9.3 匿名内部类前提和格式

匿名内部类必须继承一个父类或者实现一个父接口

匿名内部类格式

new 父类名或者接口名(){
    // 方法重写
    @Override 
    public void method() {
        // 执行语句
    }
};

3.9.4 使用方式

以接口为例,匿名内部类的使用,代码如下:

interface Swim {
    public abstract void swimming();
}

public class Demo07 {
    public static void main(String[] args) {
        // 使用匿名内部类
		new Swim() {
			@Override
			public void swimming() {
				System.out.println("自由泳...");
			}
		}.swimming();

        // 接口 变量 = new 实现类(); // 多态,走子类的重写方法
        Swim s2 = new Swim() {
            @Override
            public void swimming() {
                System.out.println("蛙泳...");
            }
        };

        s2.swimming();
        s2.swimming();
    }
}

3.9.5 匿名内部类的特点

  1. 定义一个没有名字的内部类
  2. 这个类实现了父类,或者父类接口
  3. 匿名内部类会创建这个没有名字的类的对象

3.9.6 匿名内部类的使用场景

通常在方法的形式参数是接口或者抽象类时,也可以将匿名内部类作为参数传递。代码如下:

interface Swim {
    public abstract void swimming();
}

public class Demo07 {
    public static void main(String[] args) {
        // 普通方式传入对象
        // 创建实现类对象
        Student s = new Student();
        
        goSwimming(s);
        // 匿名内部类使用场景:作为方法参数传递
        Swim s3 = new Swim() {
            @Override
            public void swimming() {
                System.out.println("蝶泳...");
            }
        };
        // 传入匿名内部类
        goSwimming(s3);

        // 完美方案: 一步到位
        goSwimming(new Swim() {
            public void swimming() {
                System.out.println("大学生, 蛙泳...");
            }
        });

        goSwimming(new Swim() {
            public void swimming() {
                System.out.println("小学生, 自由泳...");
            }
        });
    }

    // 定义一个方法,模拟请一些人去游泳
    public static void goSwimming(Swim s) {
        s.swimming();
    }
}

你可能感兴趣的:(入门到起飞,java)