1、cvpr2024

CVPR2024官网:
Overleaf模板:
1、cvpr2024_第1张图片

更改作者(去掉CVPR标识)

% \usepackage{cvpr}              % To produce the CAMERA-READY version
\usepackage[review]{cvpr}      % To produce the REVIEW version

改成

\usepackage{cvpr}              % To produce the CAMERA-READY version
% \usepackage[review]{cvpr}      % To produce the REVIEW version

1、cvpr2024_第2张图片

插入图片

横屏单图

1、cvpr2024_第3张图片

\begin{figure*}
  \centering
  \includegraphics[width=\linewidth]{fig/fig2.pdf}
  % \begin{subfigure}{\linewidth}
    \caption{Overview of DCPNeRF. }
    \label{fig:2}
  % \end{subfigure}
\end{figure*}

多子图

1、cvpr2024_第4张图片

\begin{figure}[!t]
\centering
\subfloat[Haz inputs]{
            \label{fig:fig1.a}
		\includegraphics[scale=0.38]{fig/fig1_a.png}}
\subfloat[Haz outputs]{
            \label{fig:fig1.b}
		\includegraphics[scale=0.38]{fig/fig1_b.png}}
\subfloat[Clear outputs]{
            \label{fig:fig1.c}
		\includegraphics[scale=0.38]{fig/fig1_c.png}}
\subfloat[Clear Depth]{
            \label{fig:fig1.d}
		\includegraphics[scale=0.38]{fig/fig1_d.png}}
  
\caption{ {\bf Results of DCPNeRF.} Given a set of hazy images (a), DCPNeRF utilizes two neural radiance field components to jointly reconstruct the hazy scene (b). By combining DCP atmospheric light estimation and soft density-guided weights, a dehazed representation of the clear scene (c)  is obtained from the hazy scene. Additionally, this method accurately estimates the depth map (d) of the clear scene.}
\label{fig:1}
\end{figure}

插入表格

普通表格

1、cvpr2024_第5张图片

\begin{table}
  \centering
  \begin{tabular}{ccc}
    \toprule
    Method & PSNR($\uparrow$) & SSIM($\uparrow$) \\
    \midrule
    w/o $\mathcal{L}_{foggy}$ & 24.70 & 0.91 \\
    w/o $\mathcal{W}^{\alpha}$ & 24.90 & 0.93 \\
    DCPNeRF & \textbf{27.00} & \textbf{0.94}\\
    \bottomrule
  \end{tabular}
  \caption{{\bf In the ablation experiment of $L_{foggy}$ and $W^{\alpha}$ in the Lego scene.} }
  \label{tab:2}
\end{table}

三线表

\begin{table}
\resizebox{\linewidth}{!}{

\begin{tabular}{c|cccccc}
\hline
                                                                & \multicolumn{2}{c}{Lego}                  & \multicolumn{2}{c}{Hotdog}                 & \multicolumn{2}{c}{Chair} \\
Method                                                          & PSNR($\uparrow$)          & \multicolumn{1}{c|}{SSIM($\uparrow$)} & PSNR($\uparrow$)          & \multicolumn{1}{c|}{SSIM($\uparrow$)}  & PSNR($\uparrow$)            & SSIM($\uparrow$)    \\ \hline
DCP+NGP                                                         & 23.90         & \multicolumn{1}{c|}{\textbf{0.95}} & 19.60         & \multicolumn{1}{c|}{ \st{1.13} }  & 23.30           & \st{1.09}    \\
\begin{tabular}[c]{@{}c@{}}WeatherDiffusion\\ +NGP\end{tabular} & 20.30         & \multicolumn{1}{c|}{\st{ 1.37}} & 20.80         & \multicolumn{1}{c|}{\st{ 1.46}} & 22.10           & \st{1.55}    \\
FFANet+NGP                                                      & 22.50         & \multicolumn{1}{c|}{0.92} & 23.30        & \multicolumn{1}{c|}{0.93}  & 21.90           & 0.94    \\ \hline
\textbf{DCPNeRF}                                                & \textbf{27.00} & \multicolumn{1}{c|}{0.94} & \textbf{29.50} & \multicolumn{1}{c|}{\textbf{0.95}} & \textbf{30.60}   & \textbf{0.97}   \\ \hline
\end{tabular}
}

\caption{ {\bf Quantitative comparison using Lego synthetic data with heterogeneous haze.}}
\label{tab:1}
\end{table}

1、cvpr2024_第6张图片

列表

无序列表

\begin{itemize}
    \item one
    \item two
    \item three
\end{itemize}

有序列表

\begin{enumerate}[(1)]
\item 有编号的列表
\item ...
\end{enumerate}

注意:[(1)]可以变成[{[1]}], [(i)], …

正文注意点

插入url

\url{https://www.baidu.com}

首段不缩进

\noindent

正文段落首句子体加粗加黑

{\bf Image Dehazing.}

所有标题都要注意大写
在这里插入图片描述

公式中的字母在正文出现要和公式一样,也就是用斜体

$r(t) = o + td$

1、cvpr2024_第7张图片

公式中出现的英文用要正体
1、cvpr2024_第8张图片

 {\rm with}

公式解释where不缩进,公式结尾加逗号
1、cvpr2024_第9张图片

引用公式、图片、表格等要统一

\Cref{fig:fig6.c}
or
\cref{fig:fig6.c}

参考文献

  • 不要过于详细谷歌学术,当遇到arxiv时要仔细查找文献出处。
  • 检查论文标题要与原文一致,注意大小写
  • title加双括号,避免大小写编译错误
@inproceedings{ancuti2012enhancing,
  author={Ancuti, Cosmin and Ancuti, Codruta Orniana and Haber, Tom and Bekaert, Philippe},
  booktitle={2012 IEEE Conference on Computer Vision and Pattern Recognition}, 
  title={{Enhancing underwater images and videos by fusion}},
  year={2012},
  pages={81-88}
}

你可能感兴趣的:(#,论文,python)