2019年全国硕士研究生入学统一考试管理类专业学位联考数学试题——纯题目版

2019 年 1 月份管综初数真题

一、问题求解(本大题共 5 小题,每小题 3 分,共 45 分)下列每题给出 5 个选项中,只有一个是符合要求的,请在答题卡上将所选择的字母涂黑。

1、某车间计划 10 天完成一项任务,工作 3 天后因故停工 2 天。若要按原计划完成任务,则工作效率需要提高( )
A.20%
B.30%
C.40%
D.50%
E.60%

2、设函数 f ( x ) = 2 x + a x 2 ( a > 0 ) f(x)=2x+\frac{a}{x^2}(a>0) f(x)=2x+x2a(a0) ( 0 , + ∞ ) (0,+∞) (0,+)的最小值为 f ( x 0 ) = 12 f(x_0)=12 f(x0)=12,则 x 0 x_0 x0=( )
A.5
B.4
C.3
D.2
E.1

3、某影城统计了一季度的观众人数,如图,则一季度的男女观众人数之比为( )
A.3:4
B.5:6
C.12:13
D.13:12
E.4:3
在这里插入图片描述

4、设实数 a, b 满足 ab = 6 , ∣ a + b ∣ + ∣ a − b ∣ = 6 |a+b|+|a-b|=6 a+b+ab=6 ,则 a 2 + b 2 a^2+b^2 a2+b2 =( )

A.10
B.11
C.12
D.13
E.14

5、设圆C与圆 ( x − 5 ) 2 + y 2 = 2 (x-5)^2+y^2=2 x52+y2=2关于 y = 2 x y=2x y=2x 对称,则圆 C 方程为( )
A. ( x − 3 ) 2 + ( y − 4 ) 2 = 2 (x-3)^2+(y-4)^2=2 x32+y42=2
B. ( x + 4 ) 2 + ( y − 3 ) 2 = 2 (x+4)^2+(y-3)^2=2 x+42+y32=2
C. ( x − 3 ) 2 + ( y + 4 ) 2 = 2 (x-3)^2+(y+4)^2=2 x32+y+42=2
D. ( x + 3 ) 2 + ( y − 3 ) 2 = 2 (x+3)^2+(y-3)^2=2 x+32+y32=2
E. ( x + 3 ) 2 + ( y − 4 ) 2 = 2 (x+3)^2+(y-4)^2=2 x+32+y42=2

6、将一批树苗种在一个正方形花园边上,四角都种,如果每隔 3 米种一棵,那么剩下 10棵树苗;如果每隔 2 米种一棵,那么恰好种满正方形的 3 条边,则这批树苗有()棵。

A.54
B.60
C.70
D.82
E.94

7、在分别标记 1,2,3,4,5,6 的 6 张卡片,甲抽取一张,乙从余下的卡片中再抽取 2 张,乙的卡片数字之和大于甲的卡片数字的概率为()
A. 11 60 \frac{11}{60} 6011
B. 13 60 \frac{13}{60} 6013
C. 43 60 \frac{43}{60} 6043
D. 47 60 \frac{47}{60} 6047
E. 49 60 \frac{49}{60} 6049

8、10 名同学的语文和数学成绩如表

语文成绩 90 92 94 88 86 95 87 89 91 93
数学成绩 94 88 96 93 90 85 84 80 82 98

语文和数学成绩的均值分别为 E 1 E_1 E1 E 2 E_2 E2 ,标准差分别为 σ 1 σ_1 σ1 σ 2 σ_2 σ2,则
A. E 1 > E 2 , σ 1 > σ 2 E_1>E_2,σ_1>σ_2 E1E2σ1σ2
B. E 1 > E 2 , σ 1 < σ 2 E_1>E_2,σ_1<σ_2 E1E2σ1σ2
C. E 1 > E 2 , σ 1 = σ 2 E_1>E_2,σ_1=σ_2 E1E2σ1=σ2
D. E 1 < E 2 , σ 1 > σ 2 E_1<E_2,σ_1>σ_2 E1E2σ1σ2
E. E 1 < E 2 , σ 1 < σ 2 E_1<E_2,σ_1<σ_2 E1E2σ1σ2

9、如图,正方体位于半径为 3 的球内,且一面位于球的大圆上,则正方体表面积最大为()
A.12
B.18
C.24
D.30
E.36
在这里插入图片描述

10、某中学的 5 个学科各推荐 2 名教师作为支教候选人,若从中选出来自不同学科的 2 人参加支教工作,则不同的选派方式有( )种
A. 20
B. 24
C. 30
D. 40
E. 45

11、某单位要铺设草坪,若甲、乙两公司合作需 6 天完成,工时费共 2.4 万元。若甲公司单独做 4 天后由乙公司接着做 9 天完成,工时费共计 2.35 万元。若由甲公司单独完成该项目,则工时费共计()万元

A.2.25
B.2.35
C.2.4
D.2.45
E.2.5

12、如图,六边形 ABCDEF 是平面与棱长为 2 的正方体所截得到的,若 A,B,D,E 分别为相应棱的中点,则六边形 ABCDEF 的面积为()
在这里插入图片描述
A. 3 2 \sqrt{3\over2} 23
B. 3 \sqrt{3} 3
C. 2 3 2\sqrt{3} 23
D. 3 3 3\sqrt{3} 33
E. 4 3 4\sqrt{3} 43

13、货车行驶 72km 用时 1 小时,速度V 与行驶时间t 的关系如图所示,则 V o = V_o= Vo=
在这里插入图片描述

A.72
B.80
C.90
D.85
E.100

14、在三角形 ABC 中, AB =4, AC =6, BC =8 ,D 为BC 的中点,则 AD =( )

A. 11 \sqrt{11} 11
B. 10 \sqrt{10} 10
C.3
D. 2 2 2\sqrt{2} 22
E. 7 \sqrt{7} 7

15、设数列{ a n {a_n} an}满足 a 1 = 0 , a n + 1 − 2 a n = 1 a_1=0,a_{n+1}-2a_n=1 a1=0,an+12an=1,则 a 100 = a_{100}= a100=()
A. 2 99 − 1 2^{99}-1 2991
B. 2 99 2^{99} 299
C. 2 99 + 1 2^{99}+1 299+1
D. 2 100 − 1 2^{100}-1 21001
E. 2 100 + 1 2^{100}+1 2100+1

二.条件充分性判断:第 16-25 小题,每小题 3 分,共 30 分。

要求判断每题给出的条件(1)和(2)能否充分支持题干所陈述的结论 A、B、C、D、E 五个选项为判断结果,请选择一项符合试题要求的判断,请在答题卡上将所选的字母涂黑。
(A) 条件(1)充分,但条件(2)不充分
(B) 条件(2)充分,但条件(1)不充分
(C) 条件(1)和(2)都不充分,但联合起来充分
(D) 条件(1)充分,条件(2)也充分
(E) 条件(1)不充分,条件(2)也不充分,联合起来仍不充分

16、甲、乙、丙三人各自拥有不超过 10 本图书,甲再购入 2 本图书后,他们拥有的图书量构成等比数列,则能确定甲拥有图书的数量
(1) 已知乙拥有的图书数量
(2) 已知丙拥有的图书数量

17、有甲乙两袋奖券,获奖率分别为 p 和q ,某人从两袋中各随机抽取 1 张奖券,则此人获奖的概率不小于 3 2 \frac{3}{2} 23

(1) 已经 p + q = 1 p + q = 1 p+q=1

(2) 已知 p q = 1 4 pq=\frac{1}{4} pq=41

18、直线 y = k x y =kx y=kx 与圆 x 2 + y 2 − 4 x + 3 = 0 x^{2}+ y^2−4x+3 =0 x2+y24x+3=0 有两个交点

(1) − 3 3 < k < 0 -{\sqrt{3}\over3}<k<0 33 k0

(2) 0 < k < 2 2 0<k<{\sqrt{2}\over2} 0k22

19、能确定小明年龄
(1)小明年龄是完全平方数
(2)20年后小明年龄是完全平方数

20、关于 x 的方程 x 2 + a x + b = 1 x^2+ax+b=1 x2+ax+b=1有实根

(1) a +b =0
(2) a −b =0

21、如图,已知正方形 ABCD 面积,O 为 BC 上一点,P 为 AO 的中点,Q 为 DO 上一点,则能确定三角形 PQD 的面积。

在这里插入图片描述

(1)O 为 BC 的三等分点
(2)Q 为 DO 的三等分点

22、设 n 为正整数,则能确定n 除以 5 的余数
(1) 已知 n 除以 2 的余数
(2) 已知n 除以 3 的余数

23、某校理学院五个系每年录取人数如下表:

系数 数学系 物理系 化学系 生物系 地学系
录取人数 60 120 90 60 30

今年与去年相比,物理系平均分没交,则理学院录取平均分升高了。
(1) 数学系录取平均分升高了 3 分,生物系录取平均分降低了 2 分
(2) 化学系录取平均分升高了 1 分,地学系录取平均分降低了 4 分

24、设三角区域D由直线 x + 8 y − 56 = 0 , x − 6 y + 42 = 0 x+8y-56=0,x-6y+42=0 x+8y56=0,x6y+42=0 k x − y + 8 − 6 k = 0 ( k < 0 ) kx-y+8-6k=0(k<0) kxy+86k=0(k0)围成,则对任意的 ( x , y ) (x,y) (x,y) l g ( x 2 + y 2 ) ≤ 2 lg(x^2+y^2)≤2 lg(x2+y2)2

(1) k ∈ ( − ∞ , − 1 ] k∈(-∞,-1] k(,1]
(2) k ∈ [ − 1 , − 1 8 ) k∈[-1,-{1\over8}) k[1,81)

25、设数列{ a n a_n an}的前n项和为 S n S_n Sn,则{ a n a_n an}等差
(1) S n = n 2 + 2 n , n = 1 , 2 , 3 S_n=n^2+2n,n=1,2,3 Sn=n2+2n,n=1,2,3
(2) S n = n + 2 n + 1 , n = 1 , 2 , 3 S_n=n^+2n+1,n=1,2,3 Sn=n+2n+1,n=1,2,3

2019年1月管理类联考数学参考答案

1-5 CBCDE
6-10 DDBED
11-15 EDCBA
16-20 CDACC
21-25 BECAA

在这里插入图片描述

你可能感兴趣的:(管理类专业学位联考MBA,EME—share,考研,MBA,MEM,在职研,EMBA)