【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL

相关文章

【一】-环境配置+python入门教学

【二】-Parl基础命令

【三】-Notebook、&pdb、ipdb 调试

【四】-强化学习入门简介

【五】-Sarsa&Qlearing详细讲解

【六】-DQN

【七】-Policy Gradient

【八】-DDPG

【九】-四轴飞行器仿真

飞桨PARL_2.0&1.8.5(遇到bug调试修正)


一、AI Studio 项目详解【VisualDL工具】

二、AI Studio 项目详解【环境使用说明、脚本任务】

三、AI Studio 项目详解【分布式训练-单机多机】

四、AI Studio 项目详解【图形化任务】

五、AI Studio 项目详解【在线部署及预测】


AI Studio 项目详解【VisualDL工具】

1.VisualDL工具

VisualDL是一个面向深度学习任务设计的可视化工具。VisualDL 利用了丰富的图表来展示数据,用户可以更直观、清晰地查看数据的特征与变化趋势,有助于分析数据、及时发现错误,进而改进神经网络模型的设计。喜欢的同学可以去star支持一下哦~

AI Studio Notebook 项目(Paddle1.8.0及以上版本)已经集成VisualDL工具以便于您的使用,可在可视化tab中启动VisualDL服务。

VisualDL 支持 scalar, image, audio, graph, histogram, pr curve, high dimensional 七个组件。

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第1张图片
1.2 Al Studio操作说明

详细操作链接:https://aistudio.baidu.com/aistudio/projectdetail/1739945

Step1 训练代码中增加 Loggers 来记录不同种类的数据. 注意我们的logdir = "./log", 即需要把log目录放到/home/aistudio/log.

from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 初始化一个记录器
    with LogWriter(logdir="./log/scalar_test/train") as writer:

Step2 训练过程中插入数据打点语句,将结果储存至日志文件中

for step in range(1000):
            # 向记录器添加一个tag为`acc`的数据
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # 向记录器添加一个tag为`loss`的数据
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))

Step3 切换到「可视化」页签,指定日志文件与模型文件(不指定日志文件无法启动VisualDL)

  1. 创建日志文件LogWriter,设置实验结果存放路径,默认上一级路径为'./home/aistudio'
  2. 训练过程中插入数据打点语句,将结果储存至日志文件中
  3. 切换到「可视化」页签,指定日志文件与模型文件(不指定日志文件无法启动VisualDL)

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第2张图片

  • 选择日志文件 (适用于scalar, image, histogram, pr curve, high dimensional五种组件)

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第3张图片 

可以选择多个,后缀为log的文件。

  •  选择模型文件(适用于graph)

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第4张图片     【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第5张图片

  • *注意:VisualDL启动中不可删除或替换日志/模型文件;日志文件可多选,模型文件一次只能上传一个,且模型文件暂只支持模型网络结构,不支持展示各层参数。

具体码源编写情况见链接:https://aistudio.baidu.com/aistudio/projectdetail/1739945

训练网络并使用VisualDL2.0可视化训练过程

  • 创建LeNet日志文件:
writer = LogWriter("./log/lenet")
  • 训练过程中插入作图语句,展示accuracy和loss的变化趋势:
writer.add_scalar(tag="train/loss", step=step, value=cost)

writer.add_scalar(tag="train/acc", step=step, value=accuracy)
  • 创建多组子日志文件,以相同tag名记录同一类参数,实现多组实验对比:
writer=LogWriter('paddle_lenet_log/lr0.001')

writer1=LogWriter('paddle_lenet_log/lr0.01')

writer2=LogWriter('paddle_lenet_log/lr0.05')

writer3=LogWriter('paddle_lenet_log/lr0.1')

writer.add_scalar(tag="train/loss", step=step, value=cost)

writer.add_scalar(tag="train/acc", step=step, value=accuracy)

writer1.add_scalar(tag="train/loss", step=step, value=cost)

writer1.add_scalar(tag="train/acc", step=step, value=accuracy)

writer2.add_scalar(tag="train/loss", step=step, value=cost)

writer2.add_scalar(tag="train/acc", step=step, value=accuracy)

writer3.add_scalar(tag="train/loss", step=step, value=cost)

writer3.add_scalar(tag="train/acc", step=step, value=accuracy)
  • 记录每一批次中的第一张图片:
img = np.reshape(batch[0][0], [28, 28, 1]) * 255

writer.add_image(tag="train/input", step=step, img=img)
  • 记录训练过程中每一层网络权重(weight)、偏差(bias)的变化趋势:
writer.add_histogram(tag='train/{}'.format(param), step=step, values=values)
  • 记录分类效果--precision & recall曲线:
writer.add_pr_curve(tag='train/class_{}_pr_curve'.format(i),
                     labels=label_i,
                     predictions=prediction_i,
                     step=step,
                     num_thresholds=20)
  • 保存模型结构:
fluid.io.save_inference_model(dirname='./model', feeded_var_names=['img'],target_vars=[predictions], executor=exe)


1.3 Scalar-标量组件

Scalar 组件的输入数据类型为标量,该组件的作用是将训练参数以折线图形式呈现。将损失函数值、准确率等标量数据作为参数传入 scalar 组件,即可画出折线图,便于观察变化趋势。

        记录接口

Scalar 组件的记录接口如下:

add_scalar(tag, value, step, walltime=None)

接口参数说明如下:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第6张图片

*注意tag的使用规则为:

  1. 第一个/前的为父tag,并作为一栏图片的tag
  2. 第一个/后的为子tag,子tag的对应图片将显示在父tag下
  3. 可以使用多次/,但一栏图片的tag依旧为第一个/前的tag
  • 创建train为父tag,acc和loss为子tag:train/acc、 train/loss,即创建了tag为train的图片栏,包含acc和loss两张图片:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第7张图片

  • 创建train为父tag,test/acc和test/loss为子tag:train/test/acc、 train/test/loss,即创建了tag为train的图片栏,包含test/acc和test/loss两张图片:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第8张图片

  • 创建两个父tag:acc、 loss,即创建了tag分别为acc和loss的两个图片栏::

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第9张图片

举例demo基础使用:

from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 初始化一个记录器
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
            # 向记录器添加一个tag为`acc`的数据
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # 向记录器添加一个tag为`loss`的数据
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
  • 多组实验对比

下面展示了使用Scalar组件实现多组实验对比

多组实验对比的实现分为两步:

  1. 创建子日志文件储存每组实验的参数数据
  2. 将数据写入scalar组件时,使用相同的tag,即可实现对比不同实验同一类型参数
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 步骤一:创建父文件夹:log与子文件夹:scalar_test
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
            # 步骤二:向记录器添加一个tag为`train/acc`的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:向记录器添加一个tag为`train/loss`的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
    # 步骤一:创建第二个子文件夹scalar_test2       
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
            # 步骤二:在同样名为`train/acc`下添加scalar_test2的accuracy的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:在同样名为`train/loss`下添加scalar_test2的loss的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))

运行上述程序后,点击可视化选择相应日志文件即可查看以下折线图,观察scalar_test和scalar_test2的accuracy和loss的对比。

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第10张图片

  • 支持数据卡片「最大化」、「还原」、「坐标系转化」(y轴对数坐标)、「下载」折线图

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第11张图片

可进行数据流选择

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第12张图片【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第13张图片

  • X轴有三种衡量尺度
  1. Step:迭代次数
  2. Walltime:训练绝对时间
  3. Relative:训练时长

1.4 lmage-图片可视化组件

     Image 组件用于显示图片数据随训练的变化。在模型训练过程中,将图片数据传入 Image 组件,就可在 VisualDL 的前端网页查看相应图片。

记录接口

Image 组件的记录接口如下:

add_image(tag, img, step, walltime=None)

接口参数说明如下:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第14张图片

import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
    """获取图片的随机 100x100 分片
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
    # 初始化一个记录器
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
            # 添加一个图片数据
            writer.add_image(tag="eye",
                             img=random_crop("../../docs/images/eye.jpg"),
                             step=step)

 


1.5 Audio--音频播放组件

Audio组件实时查看训练过程中的音频数据,监控语音识别与合成等任务的训练过程。

记录接口

Audio 组件的记录接口如下:

add_audio(tag, audio_array, step, sample_rate)

接口参数说明如下:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第15张图片

from visualdl import LogWriter
import numpy as np
import wave


def read_audio_data(audio_path):
    """
    Get audio data.
    """
    CHUNK = 4096
    f = wave.open(audio_path, "rb")
    wavdata = []
    chunk = f.readframes(CHUNK)
    while chunk:
        data = np.frombuffer(chunk, dtype='uint8')
        wavdata.extend(data)
        chunk = f.readframes(CHUNK)
    # 8k sample rate, 16bit frame, 1 channel
    shape = [8000, 2, 1]
    return shape, wavdata


if __name__ == '__main__':
    with LogWriter(logdir="./log") as writer:
        audio_shape, audio_data = read_audio_data("./testing.wav")
        audio_data = np.array(audio_data)
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
                         sample_rate=8000)


1.6 Graph--网络结构组件

Graph组件一键可视化模型的网络结构。用于查看模型属性、节点信息、节点输入输出等,并进行节点搜索,协助开发者们快速分析模型结构与了解数据流向。

在生成Model文件后,在可视化模块中选择模型文件,启动后即可查看网络结构可视化:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第16张图片

  • 支持模型格式:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
  • 实验性支持模型格式:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow

1.7 Histogram--直方图组件

Histogram组件以直方图形式展示Tensor(weight、bias、gradient等)数据在训练过程中的变化趋势。深入了解模型各层效果,帮助开发者精准调整模型结构。

记录接口

Histogram 组件的记录接口如下:

add_histogram(tag, values, step, walltime=None, buckets=10)

接口参数说明如下:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第17张图片

from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)

可选择Offset或Overlay模式

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第18张图片  【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第19张图片

数据点Hover展示参数值、训练步数、频次

  • 在第240次训练步数时,权重为-0.0031,且出现的频次是2734次

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第20张图片

 

1.8 PR Curve--PR曲线组件

PR Curve以折线图形式呈现精度与召回率的权衡分析,清晰直观了解模型训练效果,便于分析模型是否达到理想标准。

记录接口

PR Curve组件的记录接口如下:

add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)

接口参数说明如下:

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第21张图片

from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)

数据点Hover展示详细信息:阈值对应的TP、TN、FP、FN

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第22张图片

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第23张图片

其中,列对应于实例实际所属的类别,行表示分类预测的类别。

  • TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。
  • FP(False Positive):指被错误的标记为正样本的负样本数,即实际为负样本而被预测为正样本,所以是False。
  • TN(True Negative):指正确分类的负样本数,即预测为负样本,实际也是负样本。
  • FN(False Negative):指被错误的标记为负样本的正样本数,即实际为正样本而被预测为负样本,所以是False。
  • TP+FP+TN+FN:样本总数。
  • TP+FN:实际正样本数。
  • TP+FP:预测结果为正样本的总数,包括预测正确的和错误的。
  • FP+TN:实际负样本数。
  • TN+FN:预测结果为负样本的总数,包括预测正确的和错误的

1.9 High Dimensional-数据降维组件

High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下两种降维算法:

  • PCA : Principle Component Analysis 主成分分析
  • t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入

记录接口

High Dimensional 组件的记录接口如下:

add_embeddings(tag, labels, hot_vectors, walltime=None)

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第24张图片

from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
    # 初始化一个记录器
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        # 将一组labels和对应的hot_vectors传入记录器进行记录
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)

【一】AI Studio 项目详解【(一)VisualDL工具、环境使用说明、脚本任务、图形化任务、在线部署及预测】PARL_第25张图片

参考链接:https://ai.baidu.com/ai-doc/AISTUDIO/Dk3e2vxg9

你可能感兴趣的:(#,飞桨AIstudio教学使用,人工智能,tensorflow,机器学习,深度学习,神经网络)