Es学习·第五站~
Es学习起始站:【微服务】Elasticsearch概述&环境搭建(一)
本文已收录至专栏:微服务探索之旅
希望您能有所收获
综合前几站所学,我们已经对Elasticsearch的使用有了一定的了解,接下来让我们一起通过一个综合实战案例来复习前几站所学内容,体会在实际生产中的作用。
我们一起实现如下功能:
按照第一站的学习部署Elasticsearch并启动运行。
使用Elasticsearch,肯定离不开RestHighLevelClient,我们可以把它注册到Spring中作为一个Bean。在cn.itcast.hotel
中的HotelDemoApplication
中声明这个Bean:
@Bean
public RestHighLevelClient client(){
return new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://192.168.150.101:9200")
));
}
由此可以知道,这个请求的信息如下:
total
:总条数List
:当前页的数据因此,我们实现业务的流程如下:
实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。
由前端请求的json结构:
{
"key": "搜索关键字",
"page": 1,
"size": 3,
"sortBy": "default"
}
我们可以在cn.itcast.hotel.pojo
包下定义一个实体类:
package cn.itcast.hotel.pojo;
import lombok.Data;
@Data
public class RequestParams {
private String key;
private Integer page;
private Integer size;
private String sortBy;
}
因为是分页查询,所以我们需要返回的分页结果PageResult,包含两个属性:
total
:总条数List
:当前页的数据因此,我们在cn.itcast.hotel.pojo
中定义返回结果:
package cn.itcast.hotel.pojo;
import lombok.Data;
import java.util.List;
@Data
public class PageResult {
private Long total;
private List<HotelDoc> hotels;
public PageResult() {
}
public PageResult(Long total, List<HotelDoc> hotels) {
this.total = total;
this.hotels = hotels;
}
}
定义一个HotelController,结合前端请求我们可以分析出如下结构:
Long total
:总条数List hotels
:酒店数据因此,我们在cn.itcast.hotel.web
中定义HotelController:
@RestController
@RequestMapping("/hotel")
public class HotelController {
@Autowired
private IHotelService hotelService;
// 搜索酒店数据并分页
@PostMapping("/list")
public PageResult search(@RequestBody RequestParams params){
return hotelService.search(params);
}
}
我们在controller调用了search,但并没有实现该方法,因此下面我们就在IHotelService中定义方法,再去实现业务逻辑。
在cn.itcast.hotel.service
中的IHotelService
接口中定义一个方法:
/**
* 根据关键字搜索酒店信息并分页
* @param params 请求参数对象,包含用户输入的关键字
* @return 酒店文档列表
*/
PageResult search(RequestParams params);
在cn.itcast.hotel.service.impl
中的HotelService
中实现search方法:
@Override
public PageResult search(RequestParams params) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query查询
String key = params.getKey();
if (key == null || "".equals(key)) {
boolQuery.must(QueryBuilders.matchAllQuery());
} else {
boolQuery.must(QueryBuilders.matchQuery("all", key));
}
// 2.2.分页展示
int page = params.getPage();
int size = params.getSize();
request.source().from((page - 1) * size).size(size);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
return handleResponse(response);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
// 结果解析
private PageResult handleResponse(SearchResponse response) {
// 4.解析响应
SearchHits searchHits = response.getHits();
// 4.1.获取总条数
long total = searchHits.getTotalHits().value;
// 4.2.文档数组
SearchHit[] hits = searchHits.getHits();
// 4.3.遍历
List<HotelDoc> hotels = new ArrayList<>();
for (SearchHit hit : hits) {
// 获取文档source
String json = hit.getSourceAsString();
// 反序列化
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
// 放入集合
hotels.add(hotelDoc);
}
// 4.4.封装返回
return new PageResult(total, hotels);
}
可以看到我们已经成功的实现了搜索和分页功能。如需详细了解搜索与分页语法可以看第三站学习中的全文检索查询内容~
点击过滤项可以看到发送的请求与搜索相同,但是传递的参数却多了几个。
根据页面展示我们可以推断包含的过滤条件有:
修改在cn.itcast.hotel.pojo
包下的实体类RequestParams:
@Data
public class RequestParams {
private String key;
private Integer page;
private Integer size;
private String sortBy;
// 新增如下过滤条件参数
private String city;
private String brand;
private String starName;
private Integer minPrice;
private Integer maxPrice;
}
由于结果过滤业务与搜索业务接口相同,我们只需要修改HotelService中的search方法即可。
分析可以知道只有一个地方需要修改:requet.source().query( … )中的查询条件。
在之前的业务中,只有match查询,即根据关键字搜索,现在要添加条件过滤,包括:
涉及多个查询条件组合,肯定需要boolean查询来组合:
buildBasicQuery的代码如下:
private void buildBasicQuery(RequestParams params, SearchRequest request) {
// 1.构建BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 2.关键字搜索
String key = params.getKey();
if (key == null || "".equals(key)) {
boolQuery.must(QueryBuilders.matchAllQuery());
} else {
boolQuery.must(QueryBuilders.matchQuery("all", key));
}
// 3.城市条件
if (params.getCity() != null && !params.getCity().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
}
// 4.品牌条件
if (params.getBrand() != null && !params.getBrand().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
}
// 5.星级条件
if (params.getStarName() != null && !params.getStarName().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
}
// 6.价格
if (params.getMinPrice() != null && params.getMaxPrice() != null) {
boolQuery.filter(QueryBuilders
.rangeQuery("price")
.gte(params.getMinPrice())
.lte(params.getMaxPrice())
);
}
// 7.放入source
request.source().query(boolQuery);
}
可以看到我们已经成功实现了结果过滤功能。如需详细了解结果过滤语法可以看第三站学习的精确查询和复合查询中的布尔查询内容~
在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:
并且,在前端会通过搜索接口发起查询请求,将坐标发送到服务端:
我们要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:
修改在cn.itcast.hotel.pojo
包下的实体类RequestParams:
package cn.itcast.hotel.pojo;
import lombok.Data;
@Data
public class RequestParams {
private String key;
private Integer page;
private Integer size;
private String sortBy;
private String city;
private String brand;
private String starName;
private Integer minPrice;
private Integer maxPrice;
// 增加我当前的地理坐标
private String location;
}
由于与搜索接口相同,只需要在HotelService的
search方法中,添加一个排序功能即可:
完整代码如下:
@Override
public PageResult search(RequestParams params) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
buildBasicQuery(params, request);
// 2.2.分页
int page = params.getPage();
int size = params.getSize();
request.source().from((page - 1) * size).size(size);
// 2.3.按附近坐标距离排序
String location = params.getLocation();
if (location != null && !location.equals("")) {
request.source().sort(SortBuilders
.geoDistanceSort("location", new GeoPoint(location))
.order(SortOrder.ASC)
.unit(DistanceUnit.KILOMETERS)
);
}
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
return handleResponse(response);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
发现确实可以实现对我附近酒店的排序,不过并没有看到酒店到底距离我多远,这该怎么办?
排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:
因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。
我们要做两件事:
package cn.itcast.hotel.pojo;
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@NoArgsConstructor
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
private String brand;
private String city;
private String starName;
private String business;
private String location;
private String pic;
// 添加记录排序时的 距离值
private Object distance;
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
}
}
可以看到我们已经成功实现了查询附加的酒店功能。如需详细了解地理查询语法可以看第三站学习的地理坐标查询内容~
搜索内容时,我们常常可以看到位于顶部的是广告。接下来我们实现指定酒店在搜索结果中排名靠前,效果如图:
页面会给指定的酒店添加广告标记。
那怎样才能让指定的酒店排名置顶呢?
我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。
因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分。
比如,我们给酒店添加一个字段:isAD,Boolean类型:
这样function_score包含3个要素就很好确定了:
因此,业务的实现步骤包括:
给HotelDoc类添加isAD字段,Boolean类型
挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true
修改search方法,添加function score功能,给isAD值为true的酒店增加权重
给cn.itcast.hotel.pojo
包下的HotelDoc类添加isAD字段:
接下来,作为测试效果,我们挑几个酒店,在kinbana中添加isAD字段,设置为true:
POST /hotel/_update/1902197537
{
"doc": {
"isAD": true
}
}
POST /hotel/_update/2056126831
{
"doc": {
"isAD": true
}
}
POST /hotel/_update/1989806195
{
"doc": {
"isAD": true
}
}
POST /hotel/_update/2056105938
{
"doc": {
"isAD": true
}
}
接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre
查询。
我们可以将之前写的boolean查询放到算分查询中,然后添加过滤条件、算分函数、加权模式。所以原来的代码依然可以沿用。
修改HotelService
类中的buildBasicQuery
方法,添加算分函数查询:
private void buildBasicQuery(RequestParams params, SearchRequest request) {
// 1.构建BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 关键字搜索
String key = params.getKey();
if (key == null || "".equals(key)) {
boolQuery.must(QueryBuilders.matchAllQuery());
} else {
boolQuery.must(QueryBuilders.matchQuery("all", key));
}
// 城市条件
if (params.getCity() != null && !params.getCity().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
}
// 品牌条件
if (params.getBrand() != null && !params.getBrand().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
}
// 星级条件
if (params.getStarName() != null && !params.getStarName().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
}
// 价格
if (params.getMinPrice() != null && params.getMaxPrice() != null) {
boolQuery.filter(QueryBuilders
.rangeQuery("price")
.gte(params.getMinPrice())
.lte(params.getMaxPrice())
);
}
// 添加算分查询
// 2.算分控制
FunctionScoreQueryBuilder functionScoreQuery =
QueryBuilders.functionScoreQuery(
// 原始查询,相关性算分的查询
boolQuery,
// function score的数组
new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
// 其中的一个function score 元素
new FunctionScoreQueryBuilder.FilterFunctionBuilder(
// 过滤条件
QueryBuilders.termQuery("isAD", true),
// 算分函数
ScoreFunctionBuilders.weightFactorFunction(10)
)
});
request.source().query(functionScoreQuery);
}
可以看到我们已经成功实现了广告置顶功能。如需详细了解算分语法可以看第三站学习的复合查询中算分函数查询内容~
搜索页面的品牌、城市等信息的选项不应该是在页面写死,而应该通过聚合索引库中的酒店数据得来的:
上述,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。当用户搜索条件改变时,搜索结果会跟着变化,过滤选项也应该跟着变化。
例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。
使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。
点击过滤选项,查看浏览器可以发现,前端其实已经发出了这样的一个请求:
请求参数与搜索文档的参数完全一致。
结果是一个Map结构:
在HotelController
中添加一个方法,遵循下面的要求:
POST
/hotel/filters
RequestParams
,与搜索文档的参数一致Map>
代码:
@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
return hotelService.getFilters(params);
}
这里调用了IHotelService中的getFilters方法,尚未实现。
在IHotelService
中定义新方法:
Map<String, List<String>> filters(RequestParams params);
在HotelService
中实现该方法:
@Override
public Map<String, List<String>> filters(RequestParams params) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
buildBasicQuery(params, request);
// 2.2.设置size
request.source().size(0);
// 2.3.聚合
buildAggregation(request);
// 3.发出请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析结果
Map<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 4.1.根据品牌名称,获取品牌筛选分组桶
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("品牌", brandList);
// 4.2.根据城市名称,获取城市筛选分组桶
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("城市", cityList);
// 4.3.根据星级名称,获取星级筛选分组桶
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("星级", starList);
return result;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
// 根据城市,品牌,星级分组查询构造
private void buildAggregation(SearchRequest request) {
request.source().aggregation(AggregationBuilders
.terms("brandAgg")
.field("brand")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("cityAgg")
.field("city")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("starAgg")
.field("starName")
.size(100)
);
}
// 相同聚合逻辑封装方法
private List<String> getAggByName(Aggregations aggregations, String aggName) {
// 4.1.根据聚合名称获取聚合结果
Terms brandTerms = aggregations.get(aggName);
// 4.2.获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 4.3.遍历
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
// 4.4.获取key
String key = bucket.getKeyAsString();
brandList.add(key);
}
return brandList;
}
重启测试接口,我们可以看到如下效果,选项少了很多且动态变化:
可以看到我们已经成功实现了过滤选项展示功能。如需详细了解数据聚合语法可以看第四站学习的数据聚合部分内容~
为了更好的用户体验,当用户在搜索框搜索内容时,我们可以给出相似选项提示,效果如下:
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为List
,请求参数key在url中
要实现根据字母做补全,就必须对文档按照拼音分词,这时就需要自己安装并配置拼音分词器。
此处不再赘述,可根据第四站学习的自动补全中拼音分词器使用来配置。
在之前的使用中,我们创建索引库并未提前设置拼音分词器。我们知道索引库是无法修改的,因此只能先删除然后重新创建。
此外,我们还需要添加一个completion
类型字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。
在kinbana中进行如下操作:
DELETE /hotel
// 酒店数据索引库
PUT /hotel
{
"settings": {
"analysis": {
"analyzer": {
"text_anlyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "text_anlyzer",
"search_analyzer": "ik_smart",
"copy_to": "all"
},
"address":{
"type": "keyword",
"index": false
},
"price":{
"type": "integer"
},
"score":{
"type": "integer"
},
"brand":{
"type": "keyword",
"copy_to": "all"
},
"city":{
"type": "keyword"
},
"starName":{
"type": "keyword"
},
"business":{
"type": "keyword",
"copy_to": "all"
},
"location":{
"type": "geo_point"
},
"pic":{
"type": "keyword",
"index": false
},
"all":{
"type": "text",
"analyzer": "text_anlyzer",
"search_analyzer": "ik_smart"
},
"suggestion":{
"type": "completion",
"analyzer": "completion_analyzer"
}
}
}
}
我们需要在HotelDoc中添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在HotelDoc中添加一个字段,类型为List
,然后将brand、city、business等信息放到里面。
代码如下:
package cn.itcast.hotel.pojo;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
@Data
@NoArgsConstructor
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
private String brand;
private String city;
private String starName;
private String business;
private String location;
private String pic;
private Object distance;
private Boolean isAD;
// 自动补全字段
private List<String> suggestion;
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
// 组装suggestion
if(this.business.contains("/")){
// business有多个值,需要切割
String[] arr = this.business.split("/");
// 添加元素
this.suggestion = new ArrayList<>();
this.suggestion.add(this.brand);
Collections.addAll(this.suggestion, arr);
}else {
this.suggestion = Arrays.asList(this.brand, this.business);
}
}
}
由于我们删除了索引库,因此之前导入的数据也被清空了。
再次查询可以看到新的酒店数据中包含了suggestion字段:
HotelController
中添加新接口,接收前端请求:@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
return hotelService.getSuggestions(prefix);
}
IhotelService
中添加方法:List<String> getSuggestions(String prefix);
在HotelService
中实现方法:
@Override
public List<String> getSuggestions(String prefix) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备自动补全代码
request.source().suggest(new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix(prefix)
.skipDuplicates(true)
.size(10)
));
// 3.发起请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析结果
Suggest suggest = response.getSuggest();
// 4.1.根据补全查询名称,获取补全结果
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
// 4.2.获取options
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
// 4.3.遍历
List<String> list = new ArrayList<>(options.size());
for (CompletionSuggestion.Entry.Option option : options) {
String text = option.getText().toString();
list.add(text);
}
return list;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
重启测试接口,我们可以看到如下效果,根据输入拼音进行了一定提示:
可以看到我们已经成功实现了搜索框自动补全功能。如需详细了解自动补全语法可以看第四站学习的自动补全部分内容~
我们知道es中的数据来自于mysql数据库,因此mysql数据发生改变时,es也必须跟着改变,否则会导致数据不一致问题,这个就是elasticsearch与mysql之间的数据同步。
在第四站学习的学习中,我们学习到了三种实现es与mysql之间数据同步的解决方案,接下来让我们一起实现通过实现异步通知。
思路分析:
当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:
导入下述资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
声明exchange、queue、RoutingKey
在hotel-admin中的增、删、改业务中完成消息发送
在hotel-demo中完成消息监听,并更新elasticsearch中数据
启动并测试数据同步功能
导入资料提供的hotel-admin项目:https://pan.baidu.com/s/1rLgeSO5YykhtJTSG1IvnWg?pwd=vsfs
运行后,访问 http://localhost:8099,可以看到如下界面
查看hotel-admin项目的HotelController可以看到其中包含了酒店的CRUD功能:
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-amqpartifactId>
dependency>
RabbitMQ详细使用介绍:点击跳转
在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts
包下新建一个类MqConstants
:
package cn.itcast.hotel.constatnts;
public class MqConstants {
/**
* 声明交换机名称
*/
public final static String HOTEL_EXCHANGE = "hotel.topic";
/**
* 监听新增和修改的队列
*/
public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
/**
* 监听删除的队列
*/
public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
/**
* 新增或修改的RoutingKey
*/
public final static String HOTEL_INSERT_KEY = "hotel.insert";
/**
* 删除的RoutingKey
*/
public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
在hotel-demo中,定义config配置类,声明队列、交换机:
package cn.itcast.hotel.config;
import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MqConfig {
// 声明交换机
@Bean
public TopicExchange topicExchange(){
return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
}
// 声明队列
@Bean
public Queue insertQueue(){
return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
}
// 声明队列
@Bean
public Queue deleteQueue(){
return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
}
// 绑定队列到交换机
@Bean
public Binding insertQueueBinding(){
return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
}
// 绑定队列到交换机
@Bean
public Binding deleteQueueBinding(){
return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
}
}
在hotel-admin
中的增、删、改业务中分别发送MQ消息:
在hotel-demo
接收MQ中的消息,要做的事情包括:
IHotelService
中新增新增、删除业务void deleteById(Long id);
void insertById(Long id);
@Override
public void deleteById(Long id) {
try {
// 1.准备Request
DeleteRequest request = new DeleteRequest("hotel", id.toString());
// 2.发送请求
client.delete(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
@Override
public void insertById(Long id) {
try {
// 0.根据id查询酒店数据
Hotel hotel = getById(id);
// 转换为文档类型
HotelDoc hotelDoc = new HotelDoc(hotel);
// 1.准备Request对象
IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
// 2.准备Json文档
request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
在hotel-demo中的cn.itcast.hotel.mq
包新增一个类用于监听:
package cn.itcast.hotel.mq;
import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
@Component
public class HotelListener {
@Autowired
private IHotelService hotelService;
/**
* 监听酒店新增或修改的业务
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
public void listenHotelInsertOrUpdate(Long id){
hotelService.insertById(id);
}
/**
* 监听酒店删除的业务
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
public void listenHotelDelete(Long id){
hotelService.deleteById(id);
}
}
重启两个项目进行测试
如此表明我们已经实现了两个服务之间的数据同步