犹豫了许久,还是打算自己写吧,从各大面经上面摘取下来,写到自己这里,加深一下印象。把别人的巧克力融化了,再凝固,就是自己的巧克力了。
静态链接库是.lib
、.o
格式的文件,一般再工程的设置界面加入工程。程序编译时,会把.lib
文件加入到程序中,装载速度快,但会增加代码大小,浪费空间。
动态链接库是再程序运行的时候装入内存的模块,格式为.dll
、.so
,在程序运行时可以随时加载和移除,节省内存空间,但速度较慢。
静态库和动态库的优缺点
并发和共享是操作系统两个最基本的特性,两者互为存在条件。资源共享是以程序的并发为条件的,没有并发就没有共享;如果系统不能对共享资源进行有效的管理,会影响并发的效率。
中断:也叫外中断,来自CPU指令以外的时间的发生,例如设备发出的IO结束中断,表示设备输入输出处理已经完成。中断的发生与当前指令无关。
异常:也叫内中断。中断来源于CPU的内部,如非法操作等。对异常的处理一般依赖于当前进程的运行现场,异常不能被屏蔽,一旦出现就要立刻处理。
进程 | 线程 | 协程 | |
---|---|---|---|
定义 | 资源分配和拥有的基本单位 | 程序执行、调度的基本单位 | 用户态的轻量级线程,线程内部调度的基本单位 |
切换环境 | 进程CPU环境(栈、寄存器、页表和文件句柄等)的保存以及新调度的进程CPU环境的设置 | 保存和设置程序计数器、少量寄存器和栈的内容 | 先将寄存器上下文和栈保存,等切换回来的时候再进行恢复 |
切换者 | 操作系统 | 操作系统 | 用户 |
切换过程 | 用户态->内核态->用户态 | 用户态->内核态->用户态 | 用户态(没有陷入内核) |
调用栈 | 内核栈 | 内核栈 | 用户栈 |
拥有资源 | CPU资源、内存资源、文件资源和句柄等 | 程序计数器、寄存器、栈和状态字 | 拥有自己的寄存器上下文和栈 |
并发性 | 不同进程之间切换实现并发,各自占有CPU实现并行 | 一个进程内部的多个线程并发执行 | 同一时间只能执行一个协程,而其他协程处于休眠状态,适合对任务进行分时处理 |
系统开销 | 切换虚拟地址空间,切换内核栈和硬件上下文,CPU高速缓存失效、页表切换,开销很大 | 切换时只需保存和设置少量寄存器内容,因此开销很小 | 直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快 |
通信方面 | 进程间通信需要借助操作系统 | 线程间可以直接读写进程数据段(如全局变量)来进行通信 | 共享内存、消息队列 |
运行在用户态下的程序,只能受限地访问内存,不允许访问外围设备。占用CPU的能力被剥夺,CPU资源可以被其他程序获取。
运行在内核态下的程序,可以访问内存所有数据,包括外围设备。
在两个或者多个并发进程中,如果每个进程持有某种资源,又等待其他进程释放它目前持有的资源,在未改变这种状态之前,都不能向前推进。这一情况被称作死锁。
死锁产生的四个条件:
解决死锁的基本方法:预防死锁,避免死锁,检测死锁,解决死锁
先来先服务、短进程优先、优先级、时间片轮转、多级反馈
非抢占式的调度算法,按照请求的顺序进行调度。
有利于长作业,但不利于短作业,因为短作业必须一直等待前面的长作业执行完毕才能执行,而长作业又需要执行很长时间,造成了短作业等待时间过长
非抢占式的调度算法,按估计运行时间最短的顺序进行调度。
长作业有可能会饿死,处于一直等待短作业执行完毕的状态。因为如果一直有短作业到来,那么长作业永远得不到调度
为每个进程分配一个优先级,按优先级进行调度。
为了防止低优先级的进程永远等不到调度,可以随着时间的推移增加等待进程的优先级。
将所有就绪进程按 FCFS 的原则排成一个队列,每次调度时,把 CPU 时间分配给队首进程,该进程可以执行一个时间片。
当时间片用完时,由计时器发出时钟中断,调度程序便停止该进程的执行,并将它送往就绪队列的末尾,同时继续把 CPU 时间分配给队首的进程。
可以将这种调度算法看成是时间片轮转调度算法和优先级调度算法的结合。多级队列是为这种需要连续执行多个时间片的进程考虑,它设置了多个队列,每个队列时间片大小都不同,例如 1,2,4,8,…。进程在第一个队列没执行完,就会被移到下一个队列。
等待时间给进程推进和响应带来明显影响时称为进程饥饿。饥饿并不代表系统已经死锁,但至少有一个程序的执行被无限期地推迟。差别:① 进入饥饿的进程可以只有一个,但是死锁必须大于等于两个;② 出于饥饿状态的进程可以是一个就绪进程,但是死锁状态的进程必定是阻塞进程。
主要思想是避免系统进入不安全状态,在每次进行资源分配时,它首先检查系统是否有足够的资源满足要求,如果有,则先试行分配,并对分配后的新状态进行安全性检查。如果新状态安全,则正式分配上述资源,否则拒绝分配上述资源。这样就保证系统始终处于安全状态,从而避免死锁现象的发生。
五个哲学家围着一张圆桌,每个哲学家面前放着食物。哲学家的生活有两种交替活动:吃饭以及思考。当一个哲学家吃饭时,需要先拿起自己左右两边的两根筷子,并且一次只能拿起一根筷子。
为了防止死锁的发生,可以设置两个条件:
必须同时拿起左右两根筷子;
只有在两个邻居都没有进餐的情况下才允许进餐。
允许多个进程同时对数据进行读操作,但是不允许读和写以及写和写操作同时发生。
一个整型变量 count 记录在对数据进行读操作的进程数量,一个互斥量 count_mutex 用于对 count 加锁,一个互斥量 data_mutex 用于对读写的数据加锁。
int pthread_join(pthread_t tid, void** retval);
void pthread_exit(void *retval);
int pthread_detach(pthread_t tid);
虚拟内存的目的是为了让物理内存扩充成更大的逻辑内存,从而让程序获得更多的可用内存。
为了更好的管理内存,操作系统将内存抽象成地址空间。每个程序拥有自己的地址空间,这个地址空间被分割成多个块,每一块称为一页。
这些页被映射到物理内存,但不需要映射到连续的物理内存,也不需要所有页都必须在物理内存中。当程序引用到不在物理内存中的页时,由硬件执行必要的映射,将缺失的部分装入物理内存并重新执行失败的指令。
从上面的描述中可以看出,虚拟内存允许程序不用将地址空间中的每一页都映射到物理内存,也就是说一个程序不需要全部调入内存就可以运行,这使得有限的内存运行大程序成为可能。
例如有一台计算机可以产生 16 位地址,那么一个程序的地址空间范围是 0~64K。该计算机只有 32KB 的物理内存,虚拟内存技术允许该计算机运行一个 64K 大小的程序。
内存是存放数据的硬件,程序执行前需要先放到内存才能被CPU处理。
由于程序运行时并非任何时候都要访问程序及数据的各个部分(尤其是大程序),因此可以把用户空间分成为一个固定区和若干个覆盖区。将经常活跃的部分放在固定区,其余部分按照调用关系分段,首先将那些即将要访问的段放入覆盖区,其他段放在外存中,在需要调用前,系统将其调入覆盖区,替换覆盖区中原有的段。
覆盖技术的特点:是打破了必须将一个进程的全部信息装入内存后才能运行的限制,但当同时运行程序的代码量大于主存时仍不能运行,再而,大家要注意到,内存中能够更新的地方只有覆盖区的段,不在覆盖区的段会常驻内存。
交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)
换入:把准备好竞争CPU运行的外存从辅存移到内存。 换出:把处于等待状态(或CPU调度原则下被剥夺运行权力)的程序从内存移到外存,把内存空间腾出来。
内存交换通常在许多进程运行且内存吃紧时进行,而系统负荷降低就暂停。例如:在发现许多进程运行时经常发生缺页,就说明内存紧张,此时可以换出一些进程;如果缺页率明显下降,就可以暂停换出。
快表,又称联想寄存器(TLB) ,是一种访问速度比内存快很多的高速缓冲存储器,用来存放当前访问的若干页表项,以加速地址变换的过程。与此对应,内存中的页表常称为慢表。
Reference
阿秀的学习笔记