判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:
你能不将整数转为字符串来解决这个问题吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/palindrome-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
我的cpp解法:
//先将 整数转为字符串 ,将字符串的前半部分填入堆栈,判断字符串的后半部分的元素与堆栈中pop出的元素是否对应相等即可。
class Solution {
public:
bool isPalindrome(int x) {
string xs = to_string(x);
stack<char> s;
int i;
for(i = 0; i < xs.length() / 2; i++)
{
s.push(xs[i]);
}
int flag = 1;
if(xs.length() % 2 == 0)
{
while(i < xs.length())
{
if(xs[i] != s.top())
{
flag = 0;
break;
}
i++;
s.pop();
}
}
else
{
i++;
while(i < xs.length())
{
if(xs[i] != s.top())
{
flag = 0;
break;
}
i++;
s.pop();
}
}
if(flag == 1)
{
return true;
}
else
{
return false;
}
}
};
优化思路:
映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。
第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。
但是,如果反转后的数字大于int.MAX,我们将遇到整数溢出问题。
按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转int 数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
例如,输入 1221,我们可以将数字 “1221” 的后半部分从 “21” 反转为 “12”,并将其与前半部分 “12” 进行比较,因为二者相同,我们得知数字 1221 是回文。
首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为 - 不等于 3。所以我们可以对所有负数返回 false。除了 0 以外,所有个位是 0 的数字不可能是回文,因为最高位不等于 0。所以我们可以对所有大于 0 且个位是 0 的数字返回 false。
现在,让我们来考虑如何反转后半部分的数字。
对于数字 1221,如果执行 1221 % 10,我们将得到最后一位数字 1,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从 1221 中移除,1221 / 10 = 122,再求出上一步结果除以 10 的余数,122 % 10 = 2,就可以得到倒数第二位数字。如果我们把最后一位数字乘以 10,再加上倒数第二位数字,1 * 10 + 2 = 12,就得到了我们想要的反转后的数字。如果继续这个过程,我们将得到更多位数的反转数字。
现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?
由于整个过程我们不断将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于或等于反转后的数字时,就意味着我们已经处理了一半位数的数字了。
优化解法:
class Solution {
public:
bool isPalindrome(int x) {
// 特殊情况:
// 如上所述,当 x < 0 时,x 不是回文数。
// 同样地,如果数字的最后一位是 0,为了使该数字为回文,
// 则其第一位数字也应该是 0
// 只有 0 满足这一属性
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int revertedNumber = 0;
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
// 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
// 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
// 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
return x == revertedNumber || x == revertedNumber / 10;
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/palindrome-number/solution/hui-wen-shu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Java解法:
解法一:普通解法
最好理解的一种解法就是先将 整数转为字符串 ,然后将字符串分割为数组,只需要循环数组的一半长度进行判断对应元素是否相等即可。
///简单粗暴,看看就行
class Solution {
public boolean isPalindrome(int x) {
String reversedStr = (new StringBuilder(x + "")).reverse().toString();
return (x + "").equals(reversedStr);
}
}
解法二:进阶解法—数学解法
通过取整和取余操作获取整数中对应的数字进行比较。
举个例子:1221 这个数字。
class Solution {
public boolean isPalindrome(int x) {
//边界判断
if (x < 0) return false;
int div = 1;
//
while (x / div >= 10) div *= 10;
while (x > 0) {
int left = x / div;
int right = x % 10;
if (left != right) return false;
x = (x % div) / 10;
div /= 100;
}
return true;
}
}
解法三:进阶解法—巧妙解法
直观上来看待回文数的话,就感觉像是将数字进行对折后看能否一一对应。
所以这个解法的操作就是 取出后半段数字进行翻转。
这里需要注意的一个点就是由于回文数的位数可奇可偶,所以当它的长度是偶数时,它对折过来应该是相等的;当它的长度是奇数时,那么它对折过来后,有一个的长度需要去掉一位数(除以 10 并取整)。
具体做法如下:
class Solution {
public boolean isPalindrome(int x) {
//思考:这里大家可以思考一下,为什么末尾为 0 就可以直接返回 false
if (x < 0 || (x % 10 == 0 && x != 0)) return false;
int revertedNumber = 0;
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
return x == revertedNumber || x == revertedNumber / 10;
}
}
作者:MisterBooo
链接:https://leetcode-cn.com/problems/palindrome-number/solution/dong-hua-hui-wen-shu-de-san-chong-jie-fa-fa-jie-ch/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。