SpringBoot2.x—使用Redis的bitmap实现布隆过滤器(Guava中BF算法)

1. 布隆过滤器

1.1 布隆过滤器设计思想

布隆过滤器(Bloom Filter,下文简称BF)是专门用来检测集合中是否存在特定元素的数据结构。它是由长度为m比特的位数组k个哈希函数组成的数据结构。位数组均初始化为0,哈希函数可以将输入数据尽量的均匀散列。

  • 当插入一个元素时,将元素数据分别输入到k个哈希函数,产生k个哈希值。以k个哈希值作为位数组的下标,将其值置为1.
  • 当查询一个元素是否存在,将元素映射为k个哈希值,判断数组中各个哈希值对应值是否为1,若均为1,那么表示该元素很可能在集合中。

存在假阳性(将不在集合中的元素误判为在集合中),不存在假阴性(将在集合中的元素误判为不在集合中)

为什么不是一定在集合中?
因为一个比特位被置为1有可能会受到其他元素的影响,产生“误差率”的情况。

1.2 布隆过滤器优缺点

布隆过滤器优点:

  1. 不需要存储数据本身,只使用比特表示,因此空间占用少;
  2. 时间效率高,插入和查询的时间复杂度为O(k)。k为哈希值;
  3. 哈希函数之间可以相互独立,可以在硬件指令层次并行计算;

布隆过滤器缺点:

  1. 存在误差率,不适合任何要求100%准确性的场景;
  2. 只能插入和查询元素,不能删除元素。

所以布隆过滤器适合查询准确度要求没那么苛刻,但是对时间、空间效率要求比较高的场景。

2. 布隆过滤器的实现

2.1 Guava中的实现

引入依赖


   com.google.guava
   guava
   27.0.1-jre

使用方式

public class TestRedisBloomFilter {
    public static void main(String[] args) {
        //创建布隆过滤器
        BloomFilter bloomFilter = BloomFilter.create(
                //Funnel接口实现类的实例,它用于将任意类型T的输入数据转化为Java基本类型的数据(byte、int、char等等)。这里是会转化为byte。
                Funnels.stringFunnel(Charset.forName("utf-8")),
                //期望插入元素总个数n
                1000,
                //误差率p
                0.01);
        //填充数据
        bloomFilter.put("112");
        bloomFilter.put("113");
        bloomFilter.put("114");
        //判断元素是否存在
        System.out.println(bloomFilter.mightContain("114"));
        System.out.println(bloomFilter.mightContain("111"));
    }
}

源码分析

  1. 生成布隆过滤器
  //默认使用的策略BloomFilterStrategies.MURMUR128_MITZ_64
  @VisibleForTesting
  static  BloomFilter create(
      Funnel funnel, long expectedInsertions, double fpp, Strategy strategy) {
    //对参数的校验
    checkNotNull(funnel);
    checkArgument(
        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
    checkNotNull(strategy);

    if (expectedInsertions == 0) {
      expectedInsertions = 1;
    }
    //获取到位数组的长度m(由期望插入元素个数&误差率确定)
    long numBits = optimalNumOfBits(expectedInsertions, fpp);
    //获取到哈希函数的个数k(由期望插入元素的个数&位数组长度m确定)
    int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
    try {
      return new BloomFilter(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
    } catch (IllegalArgumentException e) {
      throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
    }
  }
  1. 获取到位数组长度m的源码
  @VisibleForTesting
  static long optimalNumOfBits(long n, double p) {
    if (p == 0) {
      p = Double.MIN_VALUE;
    }
    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
  }
  1. 获取到哈希函数的个数
  @VisibleForTesting
  static int optimalNumOfHashFunctions(long n, long m) {
    // (m / n) * log(2), but avoid truncation due to division!
    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
  }
  1. BloomFilterStrategies.MURMUR128_MITZ_64策略进行处理
  MURMUR128_MITZ_64() {
    @Override
    public  boolean put(
        T object, Funnel funnel, int numHashFunctions, LockFreeBitArray bits) {
      long bitSize = bits.bitSize();
      byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal();
      long hash1 = lowerEight(bytes);
      long hash2 = upperEight(bytes);

      boolean bitsChanged = false;
      long combinedHash = hash1;
      for (int i = 0; i < numHashFunctions; i++) {
        // Make the combined hash positive and indexable
        bitsChanged |= bits.set((combinedHash & Long.MAX_VALUE) % bitSize);
        combinedHash += hash2;
      }
      return bitsChanged;
    }

    @Override
    public  boolean mightContain(
        T object, Funnel funnel, int numHashFunctions, LockFreeBitArray bits) {
      //位数组的长度m
      long bitSize = bits.bitSize();
      //元素转换为字节数组
      byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal();
      long hash1 = lowerEight(bytes);
      long hash2 = upperEight(bytes);

      long combinedHash = hash1;
      for (int i = 0; i < numHashFunctions; i++) {
        // combinedHash & Long.MAX_VALUE) % bitSize来生成哈希值
        if (!bits.get((combinedHash & Long.MAX_VALUE) % bitSize)) {
          return false;
        }
        combinedHash += hash2;
      }
      return true;
    }

    private /* static */ long lowerEight(byte[] bytes) {
      return Longs.fromBytes(
          bytes[7], bytes[6], bytes[5], bytes[4], bytes[3], bytes[2], bytes[1], bytes[0]);
    }

    private /* static */ long upperEight(byte[] bytes) {
      return Longs.fromBytes(
          bytes[15], bytes[14], bytes[13], bytes[12], bytes[11], bytes[10], bytes[9], bytes[8]);
    }
  };

2.2 Redis的bitmap实现

参考Guava算法,为元素生成k个哈希值。存储到Redis的bitmap结构中。

使用Pipelined管道批量的操作Redis的命令

import com.google.common.hash.Funnels;
import com.google.common.hash.Hashing;
import com.google.common.primitives.Longs;
import com.tellme.utils.SpringUtil;
import lombok.extern.slf4j.Slf4j;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.StringRedisTemplate;
import java.nio.charset.Charset;
import java.util.Calendar;
import java.util.Date;
import java.util.List;

/**
 * 工具类:布隆过滤器
 */
@Slf4j
public class RedisBloomFilter {

    /**
     * 获取到Spring容器的stringRedisTemplate
     */
    private StringRedisTemplate stringRedisTemplate= SpringUtil.getBean(StringRedisTemplate.class);

    /**
     * 保存到Redis的key的前缀
     */
    private static final String BF_KEY_PREFIX = "bf:";

    /**
     * 预计元素的数量n
     */
    private int numApproxElements;
    /**
     * 误差率p
     */
    private double fpp;
    /**
     * 哈希函数的个数k
     */
    private int numHashFunctions;
    /**
     * 位数组的长度m
     */
    private int bitmapLength;


    /**
     * 构造布隆过滤器。注意:在同一业务场景下,三个参数务必相同
     *
     * @param numApproxElements 预估元素数量
     * @param fpp               可接受的最大误差(假阳性率)
     */
    public RedisBloomFilter(int numApproxElements, double fpp) {
        //获取预估数量n
        this.numApproxElements = numApproxElements;
        //获取误差率p
        this.fpp = fpp;
        //获取到位数组长度m
        bitmapLength = (int) (-numApproxElements * Math.log(fpp) / (Math.log(2) * Math.log(2)));
        //获取哈希函数个数k
        numHashFunctions = Math.max(1, (int) Math.round((double) bitmapLength / numApproxElements * Math.log(2)));
    }

    /**
     * 取得自动计算的最优哈希函数个数
     */
    public int getNumHashFunctions() {
        return numHashFunctions;
    }

    /**
     * 取得自动计算的最优Bitmap长度
     */
    public int getBitmapLength() {
        return bitmapLength;
    }

    public int getNumApproxElements() {
        return numApproxElements;
    }

    public double getFpp() {
        return fpp;
    }

    /**
     * 计算一个元素值哈希后映射到Bitmap的哪些bit上。
     *
     * @param element 元素值
     * @return bit下标的数组
     */
    private long[] getBitIndices(String element) {
        long[] indices = new long[numHashFunctions];

        byte[] bytes = Hashing.murmur3_128()
                .hashObject(element, Funnels.stringFunnel(Charset.forName("UTF-8")))
                .asBytes();

        long lowerHash = Longs.fromBytes(
                bytes[7], bytes[6], bytes[5], bytes[4], bytes[3], bytes[2], bytes[1], bytes[0]
        );
        long upperHash = Longs.fromBytes(
                bytes[15], bytes[14], bytes[13], bytes[12], bytes[11], bytes[10], bytes[9], bytes[8]
        );

        long combinedHash = lowerHash;
        for (int i = 0; i < numHashFunctions; i++) {
            indices[i] = (combinedHash & Long.MAX_VALUE) % bitmapLength;
            combinedHash += upperHash;
        }

        return indices;
    }


    /**
     * 插入元素
     *
     * @param key       原始Redis键,会自动加上'bf:'前缀
     * @param element   元素值,字符串类型
     * @param expireDate 失效时间,在expireDate时间失效
     */
    public void insert(String key, String element, Date expireDate) {
        if (key == null || element == null) {
            throw new RuntimeException("键值均不能为空");
        }
        String actualKey = BF_KEY_PREFIX.concat(key);
        long[] bitIndices = getBitIndices(element);
        stringRedisTemplate.executePipelined(new RedisCallback() {
            @Override
            public Object doInRedis(RedisConnection connection) throws DataAccessException {
                for (int i = 0; i < bitIndices.length; i++) {
                    long index = bitIndices[i];
                    connection.setBit(actualKey.getBytes(), index, true);
                }
                return null;
            }
        });
        //设置失效时间
        stringRedisTemplate.expireAt(actualKey,expireDate);
    }
    /**
     * 获取当天23点59分59秒毫秒数
     *
     * @return
     */
    public static Date getTwelveTime() {
        Calendar calendar = Calendar.getInstance();
        calendar.set(calendar.get(Calendar.YEAR),
                calendar.get(Calendar.MONTH),
                calendar.get(Calendar.DAY_OF_MONTH),
                23,
                59,
                59);
        return calendar.getTime();
    }

    /**
     * 检查元素在集合中是否(可能)存在
     *
     * @param key     原始Redis键,会自动加上'bf:'前缀
     * @param element 元素值,字符串类型
     */
    public boolean mayExist(String key, String element) {
        if (key == null || element == null) {
            throw new RuntimeException("键值均不能为空");
        }
        String actualKey = BF_KEY_PREFIX.concat(key);
        long[] bitIndices = getBitIndices(element);
        List list = stringRedisTemplate.executePipelined(new RedisCallback() {
            @Override
            public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
                for (int i = 0; i < bitIndices.length; i++) {
                    long index = bitIndices[i];
                    connection.getBit(actualKey.getBytes(), index);
                }
                return null;
            }
        });
        return !list.contains(Boolean.valueOf(false));
    }
}

测试方法:

@RestController
public class TestRedisBloomFilter {
    @RequestMapping("/bloom")
    public void insertUserT() {
        //大概3百万数据,误差率在10%作用。
        RedisBloomFilter redisBloomFilter = new RedisBloomFilter(3000000, 0.1);
        redisBloomFilter.insert("topic_read:20200812", "76930242", RedisBloomFilter.getTwelveTime());
        redisBloomFilter.insert("topic_read:20200812", "76930243", RedisBloomFilter.getTwelveTime());
        redisBloomFilter.insert("topic_read:20200812", "76930244", RedisBloomFilter.getTwelveTime());
        redisBloomFilter.insert("topic_read:20200812", "76930245", RedisBloomFilter.getTwelveTime());
        redisBloomFilter.insert("topic_read:20200812", "76930246", RedisBloomFilter.getTwelveTime());

        System.out.println(redisBloomFilter.mayExist("topic_read:20200812", "76930242"));
        System.out.println(redisBloomFilter.mayExist("topic_read:20200812", "76930244"));
        System.out.println(redisBloomFilter.mayExist("topic_read:20200812", "76930246"));
        System.out.println(redisBloomFilter.mayExist("topic_read:20200812", "76930248"));
    }
}

你可能感兴趣的:(SpringBoot2.x—使用Redis的bitmap实现布隆过滤器(Guava中BF算法))