有了HPA,我们就不用为上面的问题而烦恼,HPA会帮我们自动完成pod的扩缩容。
当资源需求过高时,会自动创建出pod副本;当资源需求低时,会自动收缩pod副本数。
注意:首先必须确保集群中已经安装heapster的组件,否则无法获取集群内资源数据,无法进行以下操作。
原理:
通过集群内的资源监控系统(heapster),来获取集群中资源的使用状态。
根据CPU、内存、以及用户自定义的资源指标数据的使用量或连接数为参考依据,来制定一个临界点,一旦超出这个点,HPA就会自动创建出pod副本
版本说明:
通过kubectl api-versions可以看到,目前有3个版本:
autoscaling/v1 #只支持通过cpu为参考依据,来改变pod副本数
autoscaling/v2beta1 #支持通过cpu、内存、连接数以及用户自定义的资源指标数据为参考依据。
autoscaling/v2beta2 #同上,小的变动
查询版本:
kubectl explain hpa ##默认查询到的是autoscaling/v1版本
kubectl explain hpa --api-version=autoscaling/v2beta1 ##如果使用其他版本,可以使用--api-version指明版本
一、部署监控组件
1、部署influxdb服务
[root@k8s-node1 heapster]# cat influxdb.yaml
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: monitoring-influxdb
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
k8s-app: influxdb
template:
metadata:
labels:
task: monitoring
k8s-app: influxdb
spec:
containers:
- name: influxdb
#image: gcr.io/google_containers/heapster-influxdb-amd64:v1.3.3
image: mirrorgooglecontainers/heapster-influxdb-amd64:v1.3.3
volumeMounts:
- mountPath: /data
name: influxdb-storage
volumes:
- name: influxdb-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
task: monitoring
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
# kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-influxdb
name: monitoring-influxdb
namespace: kube-system
spec:
ports:
- port: 8086
targetPort: 8086
name: http
selector:
k8s-app: influxdb
2、部署heapster服务
[root@k8s-node1 heapster]# cat heapster.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: heapster
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: heapster
subjects:
- kind: ServiceAccount
name: heapster
namespace: kube-system
roleRef:
kind: ClusterRole
name: system:heapster
apiGroup: rbac.authorization.k8s.io
---
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: heapster
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
k8s-app: heapster
template:
metadata:
labels:
task: monitoring
k8s-app: heapster
spec:
serviceAccountName: heapster
containers:
- name: heapster
#image: gcr.io/google_containers/heapster-amd64:v1.5.1
image: mirrorgooglecontainers/heapster-amd64:v1.5.1
imagePullPolicy: IfNotPresent
command:
- /heapster
- --source=kubernetes:https://kubernetes.default
- --sink=influxdb:http://monitoring-influxdb.kube-system.svc:8086
---
apiVersion: v1
kind: Service
metadata:
labels:
task: monitoring
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
#kubernetes.io/cluster-service: 'true'
kubernetes.io/name: Heapster
name: heapster
namespace: kube-system
spec:
ports:
- port: 80
targetPort: 8082
selector:
k8s-app: heapster
3、部署grafana服务
[root@k8s-node1 heapster]# cat gra.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: grafana-core
namespace: kube-system
labels:
app: grafana
component: core
spec:
replicas: 1
template:
metadata:
labels:
app: grafana
component: core
spec:
containers:
- image: grafana/grafana:4.2.0
name: grafana-core
imagePullPolicy: IfNotPresent
# env:
resources:
# keep request = limit to keep this container in guaranteed class
limits:
cpu: 100m
memory: 100Mi
requests:
cpu: 100m
memory: 100Mi
env:
# The following env variables set up basic auth twith the default admin user and admin password.
- name: GF_AUTH_BASIC_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "false"
# - name: GF_AUTH_ANONYMOUS_ORG_ROLE
# value: Admin
# does not really work, because of template variables in exported dashboards:
# - name: GF_DASHBOARDS_JSON_ENABLED
# value: "true"
readinessProbe:
httpGet:
path: /login
port: 3000
# initialDelaySeconds: 30
# timeoutSeconds: 1
volumeMounts:
- name: grafana-persistent-storage
mountPath: /var
volumes:
- name: grafana-persistent-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: kube-system
labels:
app: grafana
component: core
spec:
type: NodePort
ports:
- port: 3000
nodePort: 9004
selector:
app: grafana
4、部署测试服务nginx
[root@k8s-node1 hpa]# cat myapp.yaml
apiVersion: v1
kind: Service
metadata:
name: svc-hpa
namespace: default
spec:
selector:
app: myapp
type: NodePort ##注意这里是NodePort,下面压力测试要用到。
ports:
- name: http
port: 80
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: myapp
template:
metadata:
name: myapp-demo
namespace: default
labels:
app: myapp
spec:
containers:
- name: myapp
image: ikubernetes/myapp:v1
imagePullPolicy: IfNotPresent
ports:
- name: http
containerPort: 80
resources:
requests:
cpu: 50m
memory: 50Mi
limits:
cpu: 50m
memory: 50Mi
5、部署hpa资源
[root@k8s-node1 hpa]# cat hpa.yaml
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: myapp-hpa-v2
namespace: default
spec:
minReplicas: 1 ##至少1个副本
maxReplicas: 8 ##最多8个副本
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: myapp
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 50 ##注意此时是根据使用率,也可以根据使用量:targetAverageValue
- type: Resource
resource:
name: memory
targetAverageUtilization: 50 ##注意此时是根据使用率,也可以根据使用量:targetAverageValue
6、使用ab工具模拟压力测试:
ab -n 5000000 -c 100 http://192.168.29.176:36010/index.html
6.1、使用循环压力测试
kubectl run -i --tty load-generator --image=busybox /bin/sh
/ # while true; do wget -q -O- http://192.168.29.176:4000; done
6.1、等待一会后,查看hpa及pod数量情况
[root@k8s-node1 log]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
myapp-hpa-v2 Deployment/myapp 9%/50%, 78%/50% 1 8 2 15m
[root@k8s-node1 ~]# kubectl get pod
NAME READY STATUS RESTARTS AGE
myapp-bd9cfd5fd-pj88q 1/1 Running 0 15m
myapp-bd9cfd5fd-zrqpt 1/1 Running 0 13s
7、排错
7.1、如果出现以下错误请按照此方法解决即可
[root@k8s-node1 log]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
myapp-hpa-v2 Deployment/myapp /50%, /50% 1 8 2 15m
7.2、在kube-controller-manager启动文件中加入以下内容即可
--horizontal-pod-autoscaler-use-rest-clients=false
7.3、重启kube-controller-manager
systemctl daemon-reload
systemctl restart kube-controller-manager
7.4、再次查看hpa
[root@k8s-node1 log]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
myapp-hpa-v2 Deployment/myapp 5%/50%, 0%/50% 1 8 1 10m