- K8S中若要挂载其他命名空间中的 Secret
网络飞鸥
Kuberneteskubernetes容器云原生
在Kubernetes(k8s)里,若要挂载其他命名空间中的Secret,你可以通过创建一个Secret的ServiceAccount和RoleBinding来实现对其他命名空间Secret的访问,接着在Pod中挂载这个Secret。下面是详细的步骤和示例代码:步骤创建ServiceAccount:在要挂载Secret的命名空间里创建一个ServiceAccount。创建Role与RoleBind
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- OpenHarmony子系统开发 - 电源管理(一)
__Benco
openharmony子系统开发harmonyos人工智能
OpenHarmony子系统开发-电源管理(一)一、电源模式定制开发指导概述简介OpenHarmony默认提供了电源模式(如正常模式、性能模式、省电模式、超级省电模式)的特性。但由于不同产品的部件存在差异,导致在同样场景下电源模式的配置需要也存在差异,为此,OpenHarmony提供了电源管理的定制方式,产品定制开发者可根据产品的设计规格来定制这些特性。基本概念OpenHarmony支持的可定制的
- 认识软件测试中的黑天鹅
Alan_Wdd
测试专题测试黑天鹅
1、软件测试中的“黑天鹅”几年前,我带领的一个测试小组遗漏了一个严重的bug到网上,当用户反馈这个bug后,我们对它进行了深入的分析和重现,最终所有人一致认为,这个bug能够发生实在是机缘巧合,因为它需要多个条件同时发生才有可能触发,比如“XX算法开关必须打开、XX算法开关又必须关闭、XX参数必须取某个特定值、用户的使用环境必须是XX个场景、硬件必须是使用XX接口板、软件必须是XX版本、XX的带宽
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- Python异步编程 - asyncio库
孤寒者
Python全栈系列教程python异步编程asyncioyield协程
目录:每篇前言:异步IOPython中的异步编程实现方式:协程Python传统协程示例:实现生产者-消费者模型消费者:生产者:运行流程:整体流程:传统协程——>现代协程:asyncio库async/await每篇前言:作者介绍:【孤寒者】—CSDN全栈领域优质创作者、HDZ核心组成员、华为云享专家Python全栈领域博主、CSDN原力计划作者本文已收录于爬虫必备前端技术栈专栏:《爬虫必备前端技术栈
- 写leetcode常用的库函数和常量
xsh219
golang小知识点算法数据结构golang
在Go中刷LeetCode,以下是一些常用的标准库函数和数据类型的最大值、最小值:✅常用标准库函数数学与排序math包math.Max(x,y):返回两个float64类型数中的较大值。math.Min(x,y):返回两个float64类型数中的较小值。math.Abs(x):取绝对值。math.Pow(x,y):计算x^y。math.Sqrt(x):计算平方根。sort包sort.Ints(sl
- vpc网络的原理
会探索的小学生
网络
一、VPC的基本概念和功能VPC是一个专有的云上私有网络,允许用户在公共云上配置和管理一个逻辑隔离的网络区域。用户可以自定义IP地址范围、创建子网、配置路由表和网络网关。VPC提供了类似于传统数据中心的安全和可配置的私有网络空间,同时又具备云计算的弹性和可扩展性二、VPC的关键组件和技术细节vSwitch:交换机,组成专有网络的基础网络设备,用于连接不同的云资源。vRouter:路由器,作
- UE4手游大世界现有LevelStreaming加载机制的不足之处
你一身傲骨怎能输
UE4虚幻引擎ue4大世界
在UnrealEngine4(UE4)中,LevelStreaming是一种用于管理大型开放世界游戏场景的技术。它允许开发者将游戏世界分成多个小的“关卡”,并根据玩家的位置和视野动态加载和卸载这些关卡。这种机制在许多情况下都非常有效,但在实际应用中也存在一些不足之处,尤其是在手游开发中。以下是UE4手游大世界现有LevelStreaming加载机制的一些不足之处:1.性能开销在UnrealEngi
- 【知识管理】
搞技术的季
经验分享
一、概念:知识:公司内部的个体的、部门的、企业的,甚至是行业的不同的知识层次所综合组成的知识网络,包括品牌市场、渠道、知识产权、技术标准、技术秘密、产品附加值、竞争情报等多种内容。知识管理:是传递知识的过程,由于传递人员的经验问题或者知识源的问题,可能导致较大的知识损耗。而知识管理的过程通过对隐性知识的挖掘和一系列知识管理的活动,可以有效提升知识转化的效率,体现企业内知识资产的价值。二、要素和现状
- 【运维的七种武器】
搞技术的季
运维
最近项目陆续增加,相应的运维方面压力逐步攀升,经常出现打包和发布失败的情况,给交付团队带来困扰。运维技术是随着软件技术的发展同步发展起来的,当前复杂的软件技术架构对运维的稳定和高效带了了很大挑战。一、运维平台发展史:1.第一阶段,以专业化网管工具为代表,包括网络设备、主机、数据库、中间件、存储等进行专业监控管理的各种专业化工具。2.第二阶段,以ITIL流程化管理为代表的综合网管,通过事件、服务、流
- Scrum实施情况调查之案例分析
zhijie435
项目管理thoughtworks敏捷项目管理敏捷开发工作框架
导读:社区Agile主题敏捷实施,企业级敏捷标签Scrum作者李剑,在InfoQ中文站上发表了一篇"Scrum在中国——企业实施情况调查实录"。这份调查实录,分别调查了五个实施SCRUM的公司,其中三家公司实施成功,二家公司失败。我建议所有准备或者正在实施SCRUM的人们都能来读一下。在此,我们会对这篇文章中的案例分类进行分析、诊断。并探讨什么是敏捷开发方法、什么是SCRUM、使用敏捷方法需要什么
- Centos7软件包管理(rpm、yum)
Bulut0907
Linuxcentos软件包管理rpmyumyum源修改
目录1.rpm2.yum2.1修改yum源1.rpmRPM(RedHatPackageManager),redhat系列操作系统里面的打包安装工具查询命令:查询安装的所有rpm软件包:rpm-qa查询指定rpm软件包,并显示详细信息:rpm-qipython3卸载命令:卸载软件包,不管是否有其它软件包依赖该软件包:rpm-e--nodeps软件包名称安装命令:安装rpm包,并显示详细信息和进度条(
- 常用的数据结构有哪些?在Go语言中如何定义其实例?
开心码农1号
算法与数据结构数据结构算法go链表
常见的数据结构有:数组、链表、栈、队列、图、哈希表;1、数组用于存储和处理一组固定大小、相同类型的数据,如存储学生成绩、数组排序等。Go语言中的数组长度是固定的,在声明时需要指定长度。特点:数据元素类型相同:数组中的所有元素都具有相同的数据类型;内存地址连续:数组在内存中是连续存储的;随机访问高效:由于数组的内存地址连续,并且元素类型相同,因此可以通过索引快速访问数组中的任意元素。无论要访问数组中
- 数据让农业更聪明——用大数据激活田间地头
Echo_Wish
大数据大数据
数据让农业更聪明——用大数据激活田间地头在农业领域,随着人口增长和气候变化的影响,如何提升生产力始终是个关键话题。大数据,这个曾经只属于科技领域的概念,如今已悄然进入田间地头。今天,我以Echo_Wish的视角,和大家聊聊大数据如何赋能农业生产力,帮农民在阳光下也能掌握“科技的钥匙”。认识农业中的大数据什么是农业中的“大数据”?简单来说,就是收集和分析有关土地、气候、作物、病虫害以及市场需求等方面
- 优化Apache Spark性能之JVM参数配置指南
weixin_30777913
jvmspark大数据开发语言性能优化
ApacheSpark运行在JVM之上,JVM的垃圾回收(GC)、内存管理以及堆外内存使用情况,会直接对Spark任务的执行效率产生影响。因此,合理配置JVM参数是优化Spark性能的关键步骤,以下将详细介绍优化策略和配置建议。通过以下优化方法,可以显著减少GC停顿时间、提升内存利用率,进而提高Spark作业吞吐量和数据处理效率。同时,要根据具体的工作负载和集群配置进行调整,并定期监控Spark应
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- TK矩阵系统:高效管理与智能化操作平台
m0_74891046
矩阵
随着TikTok等社交媒体平台的快速发展,短视频创作和内容运营逐渐成为互联网行业的重要组成部分。为了帮助内容创作者、品牌运营商以及数据分析人员更高效地管理多个TikTok账号并优化运营策略,TK矩阵系统提供了一种全新的解决方案,结合了先进的软件技术与硬件设施,旨在简化操作流程,提高工作效率。TK矩阵系统概述TK矩阵系统是一款集成软件与硬件的综合平台,专为TikTok内容管理和数据采集设计。系统使用
- 兵器室门禁管理系统/智慧库室管控系统
立控信息
控制系统门禁安全入侵报警环境控制
智慧营区库室联管联控系统对营区库室安全管理意义重大,它集成指纹、人脸、动态密码等多元身份识别技术,实现严谨门禁管控,非法开门即报警,断网也能保安全;整合多种报警设备,自动布防,全方位监测入侵;具备视频交互与监控功能,方便沟通和监督;还能依据预设温湿度自动调控环境,从多维度构建起全面、智能、高效的安全管理体系,为营区库室安全稳定运行提供坚实保障。
- 【MyDB】6-TabelManager 字段与表管理 之2-SQL语句解析
-$_$-
Java项目sqlpython数据库
【MyDB】6-TabelManager字段与表管理之2-SQL语句解析前言SQL语法Parser类具体实现入口方法Parse(byte[]statement)事务控制parseBegin()parseCommit(),parseAbortDDL(DataDefinitionLanguage)parseCreate()parseDrop()DML语句parseSelect()parseInsert
- 说说你对Java里Integer缓存的理解?
java1234_小锋
javajava开发语言
大家好,我是锋哥。今天分享关于【说说你对Java里Integer缓存的理解?】面试题。希望对大家有帮助;说说你对Java里Integer缓存的理解?1000道互联网大厂Java工程师精选面试题-Java资源分享网Java中的Integer缓存是为了提高性能而引入的优化机制,特别是对于频繁使用的小范围整数的情况。具体来说,Integer类对从-128到127范围内的整数值做了缓存。这些整数值被缓存起
- 解决Ubuntu报错 E: Unable to locate package yum
SH-ke
ubuntuyumapt
开门见山,Ubuntu的包管理工具是apt-get,所以不必再安装yum。如果要安装其他包需要使用apt-get命令。#这里以locate命令为例sudoapt-getinstallmlocate下文就是问题解决的全过程了。1.报错E:Unabletolocatepackageyum我在学习Linux命令的时候需要使用locate命令,但是Ubuntu的系统里没有安装locate命令。根据弹幕的指
- IDEA本地启动flink 任务
Direction_Wind
intellij-ideaflinkjava
1pom中添加org.apache.flinkflink-clients_${scala.binary.version}${flink.version}org.apache.flinkflink-runtime-web_${scala.binary.version}${flink.version}2下载flink-dist包并3打印日志中搜索localhost可以找到flink的管理页面
- MCP服务器:AI智能体的新时代连接标准
真挺乐
人工智能
在AI技术的不断发展中,MCP(ModelContextProtocol,模型上下文协议)正成为AI智能体与外部系统交互的新标准。MCP的目标是提供一个统一的方法,让AI智能体能够安全、高效地访问各种数据源、API接口和系统工具,从而扩展其能力,提升智能化水平。本文将深入探讨MCP服务器的架构、优势及其在现实世界中的应用。什么是MCP服务器?MCP服务器是MCP架构中的关键组件,它们充当AI智能体
- 生成式对抗网络在人工智能艺术创作中的应用与创新研究
辛迎蕌
人工智能
摘要本文深入探究生成式对抗网络(GAN)在人工智能艺术创作领域的应用与创新。通过剖析GAN核心原理,阐述其在图像、音乐、文学等艺术创作中的实践,分析面临的挑战与创新方向,呈现GAN对艺术创作模式的变革,为理解人工智能与艺术融合发展提供全面视角。一、引言在人工智能与艺术深度融合的时代浪潮中,生成式对抗网络(GAN)作为一项突破性技术,为艺术创作带来了全新的可能性。它打破传统创作边界,以独特的对抗学习
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- 耦合与解耦:软件工程中的核心矛盾与破局之道
以恒1
软件工程
耦合与解耦:软件工程中的核心矛盾与破局之道在软件开发领域,耦合与解耦是贯穿始终的核心矛盾。它们如同硬币的两面,既相互对立又紧密依存。本文将从概念解析、类型分类、解耦策略到实际应用,全面剖析这对矛盾体的本质与破局之道。一、耦合的本质:依赖关系的多维透视耦合(Coupling)指软件系统中不同模块、组件或服务之间的相互依赖程度。这种依赖可能表现为数据传递、控制流交互或资源共享。根据耦合强度,可分为七种
- 为什么在Linux系统中,available会比free+buff/cache的总和少很多
fzip
Linuxlinux运维服务器
在Linux系统中,available内存值小于free+buff/cache总和的现象源于内存管理的复杂机制。以下是核心原因及技术细节:一、背景1.现象#1.free-htotalusedfreesharedbuff/cacheavailableMem:503Gi475Gi8.9Gi605Mi18Gi13GiSwap:63Gi12Gi51Gi#2.grep-E'^(MemTotal|MemFre
- ollama 基本使用教程
海上彼尚
AIai前端
目录1.安装OllamamacOS或LinuxWindows(WSL2)2.基础命令启动与停止更新Ollama3.模型管理下载预训练模型运行模型查看已安装模型删除模型从Modelfile创建自定义模型4.高级功能服务器模式与API多会话管理环境变量配置5.常见问题与技巧加速模型下载查看日志模型参数调整模型导出与分享Ollama是一个开源的大型语言模型服务工具,能够帮助用户在本地运行大模型。通过简单
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep