【python+ROS+路径规划】一、前置准备

大学四年从来没有接触过ros,保研跨专业保到了电院,毕设需要在ros中用mpc进行路径规划与跟踪(从SCI上下了一篇论文,毕设准备复现算法),跟着B站学了3个月的ros,本以为毕设分分钟就能搞定,没想到这只是开始。

网上大部分路径规划都是用C++写的,奈何大学期间为了方便,大学作业都是python帮我算的,C++都忘完了,本着做完毕设再重拾C++的理念,于是乎开启了我的python路径规划之旅。

但是别说mpc算法,我连怎么把新的路径规划算法放进ros都不知道,于是先尝试用最简单的Astar算法生成一条路径出来,并且Astar的路径正好是要当做mpc的初始值。

文章目录

  • 前置准备
    • 一、背景知识
    • 二、机器人及其前期配置
  • 最后效果
    • 一、效果展示
    • 二、后续探索
  • 完整代码

前置准备

一、背景知识

目前来说就学了B站赵老师的课程:link
剩下的就要慢慢摸索了

二、机器人及其前期配置

机器人是现买的,所以就是一个实体机器人,rviz和gazebo的模型,于是我按照赵老师的课程,自己在gazebo中建立了一个环境(随便画了一个),将机器人放进去,效果如下:
【python+ROS+路径规划】一、前置准备_第1张图片

【python+ROS+路径规划】一、前置准备_第2张图片

功能就是启动键盘控制节点,机器人可以在地图中四处移动

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

以上就是前置要求

最后效果

一、效果展示

任意指定一个位置,能够在rviz中生成一条轨迹
【python+ROS+路径规划】一、前置准备_第3张图片
跟踪展示
【python+ROS+路径规划】一、前置准备_第4张图片

这里机器人方向与起点有个180°的差,所以一开始误差比较大,颜色是参考速度,颜色越深参考速度越慢。

二、后续探索

现在只用python做出全局路径规划,并没有进行路径的平滑和跟踪,下一步将使用matlab的mpc包联合ros在gazebo中进行仿真,验证算法。

完整代码

Astar算法用的是这位大佬的代码:link

本人编程小白,如有更好的写法,请务必告诉我!!!

PS
代码中唯一需要改变的是膨胀系数,pixheight和pixweight(这个是在rviz中测出来的)

#! /usr/bin/env python


import time
from numba import jit
import math
import rospy
import numpy as np
import matplotlib.pyplot as plt
from nav_msgs.msg import OccupancyGrid
from geometry_msgs.msg import PoseWithCovarianceStamped
from geometry_msgs.msg import PoseStamped
from nav_msgs.msg import Path


#------------------------    Astar     --------------------------
class MapMatrix:
    """
        说明:
            1.构造方法需要两个参数,即二维数组的宽和高
            2.成员变量w和h是二维数组的宽和高
            3.使用:对象[x][y]可以直接取到相应的值
            4.数组的默认值都是0
    """
    def __init__(self,map):
        self.w=map.shape[0]
        self.h=map.shape[1]
        self.data=map
        
 
 
    def showArrayD(self):
        for y in range(self.h):
            for x in range(self.w):
                print(self.data[x][y],end=' ')
            print("")
 
    def __getitem__(self, item):
        return self.data[item]

class Point:
    """
    表示一个点
    """
    def __init__(self,x,y):
        self.x=x;self.y=y
 
    def __eq__(self, other):
        if self.x==other.x and self.y==other.y:
            return True
        return False
    # def __str__(self):
    #     #return "x:"+str(self.x)+",y:"+str(self.y)
    #     return [self.y,self.x]
class AStar:
    """
    AStar算法的Python3.x实现
    """
 
    class Node:  # 描述AStar算法中的节点数据
        def __init__(self, point, endPoint, g=0):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g  # g值,g值在用到的时候会重新算
            self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  # 计算h值
 
    def __init__(self, map2d, startPoint, endPoint, passTag=0):
        """
        构造AStar算法的启动条件
        :param map2d: ArrayD类型的寻路数组
        :param startPoint: Point或二元组类型的寻路起点
        :param endPoint: Point或二元组类型的寻路终点
        :param passTag: int类型的可行走标记(若地图数据!=passTag即为障碍)
        """
        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode
 
    def pointInCloseList(self, point):
        for node in self.closeList:
            if node.point == point:
                return True
        return False
 
    def pointInOpenList(self, point):
        for node in self.openList:
            if node.point == point:
                return node
        return None
 
    def endPointInCloseList(self):
        for node in self.openList:
            if node.point == self.endPoint:
                return node
        return None
 
    def searchNear(self, minF, offsetX, offsetY):
        """
        搜索节点周围的点
        :param minF:F值最小的节点
        :param offsetX:坐标偏移量
        :param offsetY:
        :return:
        """
        # 越界检测
        if minF.point.x + offsetX < 0 or minF.point.x + offsetX > self.map2d.w - 1 or minF.point.y + offsetY < 0 or minF.point.y + offsetY > self.map2d.h - 1:
            return
        # 如果是障碍,就忽略
        if self.map2d[minF.point.x + offsetX][minF.point.y + offsetY] != self.passTag:
            return
        # 如果在关闭表中,就忽略
        currentPoint = Point(minF.point.x + offsetX, minF.point.y + offsetY)
        if self.pointInCloseList(currentPoint):
            return
        # 设置单位花费
        if offsetX == 0 or offsetY == 0:
            step = 10
        else:
            step = 14
        # 如果不再openList中,就把它加入openlist
        currentNode = self.pointInOpenList(currentPoint)
        if not currentNode:
            currentNode = AStar.Node(currentPoint, self.endPoint, g=minF.g + step)
            currentNode.father = minF
            self.openList.append(currentNode)
            return
        # 如果在openList中,判断minF到当前点的G是否更小
        if minF.g + step < currentNode.g:  # 如果更小,就重新计算g值,并且改变father
            currentNode.g = minF.g + step
            currentNode.father = minF

    def start(self):
        """
        开始寻路
        :return: None或Point列表(路径)
        """
        # 判断寻路终点是否是障碍
        if self.map2d[self.endPoint.x][self.endPoint.y] != self.passTag:
            return None
 
        # 1.将起点放入开启列表
        startNode = AStar.Node(self.startPoint, self.endPoint)
        self.openList.append(startNode)
        # 2.主循环逻辑
        while True:
            # 找到F值最小的点
            minF = self.getMinNode()
            # 把这个点加入closeList中,并且在openList中删除它
            self.closeList.append(minF)
            self.openList.remove(minF)
            # 判断这个节点的上下左右节点
            self.searchNear(minF, 0, -1)
            self.searchNear(minF, 0, 1)
            self.searchNear(minF, -1, 0)
            self.searchNear(minF, 1, 0)
            # 判断是否终止
            point = self.endPointInCloseList()
            if point:  # 如果终点在关闭表中,就返回结果
                # print("关闭表中")
                cPoint = point
                pathList = []
                while True:
                    if cPoint.father:
                        # pathList.append(cPoint.point)
                        pathList.append([cPoint.point.y,cPoint.point.x])
                        cPoint = cPoint.father
                    else:
                        # print(pathList)
                        # print(list(reversed(pathList)))
                        # print(pathList.reverse())
                        return list(reversed(pathList))
            if len(self.openList) == 0:
                return None


# ------------------------------   ros路径规划配置   ---------------------------
#这个需要根据自己的地图而定
pixwidth = 10.197194  #10.2
pixheight = 4.625010  #4.6

#将最慢算法的加速一下
@jit(nopython=True)
def _obstacleMap(map,obsize):
        '''
        给地图一个膨胀参数
        
        '''
        
        indexList = np.where(map == 1)#将地图矩阵中1的位置找到
        #遍历地图矩阵
          
        for x in range(map.shape[0]):
            for y in range(map.shape[1]):
                if map[x][y] == 0:
                    for ox,oy in zip(indexList[0],indexList[1]):
                        #如果和有1的位置的距离小于等于膨胀系数,那就设为1
                        distance = math.sqrt((x-ox)**2+(y-oy)**2)
                        if distance <= obsize:
                            map[x][y] = 1



class pathPlanning():
    def __init__(self):
        '''
        起点:[2,2]
        终点:[2,4]
        地图:(未知:-1,可通行:0,不可通行:1)


        返回的内容:[(2,4),(1,4),(0,3),(1,2),(2,2)]
        '''
        
        #初始化ROS节点
        rospy.init_node("Astar_globel_path_planning",anonymous=True)
        
        #将数据处理成一个矩阵(未知:-1,可通行:0,不可通行:1)
        self.doMap()
        #obsize是膨胀系数,是按照矩阵的距离,而不是真实距离,所以要进行一个换算
        self.obsize=7 #15太大了
        print("现在进行地图膨胀")
        ob_time = time.time()
        _obstacleMap(self.map,self.obsize)
        print("膨胀地图所用时间是:{:.3f}".format(time.time()-ob_time))

        
        #获取初始位置self.init_x,self.init_y
        self.getIniPose()
        #获取终点位置self.tar_x,self.tar_y
        self.getTarPose()
        print("已接收")

        # print(self.width,self.height)
        # print("起始点")
        # print(self.init_x,self.ros中init_y)
        # print(self.start_point)
        # print("目标点")
        # print(self.tar_x,self.tar_y)
        # print(self.start_point[0])
        # print(self.final_point)
        
        # #查看是否正确找到起点终点
        # map_test = self.map.copy()
        # map_test[self.start_point[1]][self.start_point[0]] = 1
        # map_test[self.final_point[1]][self.final_point[0]] = 1
        # plt.matshow(map_test, cmap=plt.cm.gray)
        # plt.show()

        #算法生成
        s_time = time.time()
        self.map2d=MapMatrix(self.map)
        #创建AStar对象,并设置起点终点
        aStar=AStar(self.map2d,Point(self.start_point[1],self.start_point[0]),Point(self.final_point[1],self.final_point[0]))
        #开始寻路
        self.pathList=aStar.start()
        #查误差
        # print("计算之后的终点")
        # print(pixwidth - self.pathList[-1][0]*self.resolution,self.pathList[-1][1]*self.resolution - pixheight)
        # print(self.worldToMap(pixwidth - self.pathList[-1][0]*self.resolution,self.pathList[-1][1]*self.resolution - pixheight))

        print("Astar算法所用时间是:{:.3f}".format(time.time()-s_time))

        #发布Astar算法
        self.sendAstarPath()
        
    
    # def obstacleMap(self,obsize):
    #     '''
    #     给地图一个膨胀参数
        
    #     '''
        
    #     indexList = np.where(self.map == 1)#将地图矩阵中1的位置找到
    #     #遍历地图矩阵
          
    #     for x in range(self.map.shape[0]):
    #         for y in range(self.map.shape[1]):
    #             if self.map[x][y] == 0:
    #                 for ox,oy in zip(indexList[0],indexList[1]):
    #                     #如果和有1的位置的距离小于等于膨胀系数,那就设为1
    #                     distance = math.sqrt((x-ox)**2+(y-oy)**2)
    #                     if distance <= obsize:
    #                         self.map[x][y] = 1
        
    def doMap(self):
        '''
            获取数据
            将数据处理成一个矩阵(未知:-1,可通行:0,不可通行:1)
        '''
        #获取地图数据
        self.OGmap = rospy.wait_for_message("/map",OccupancyGrid,timeout=None)
        #地图的宽度
        self.width = self.OGmap.info.width
        #地图的高度
        self.height = self.OGmap.info.height
        #地图的分辨率
        self.resolution = self.OGmap.info.resolution

        
        #获取地图的数据 可走区域的数值为0,障碍物数值为100,未知领域数值为-1
        mapdata = np.array(self.OGmap.data,dtype=np.int8)
        #将地图数据变成矩阵
        self.map = mapdata.reshape((self.height,self.width))

        #将地图中的障碍变成从100变成1
        self.map[self.map == 100] = 1
        #列是逆序的,所以要将列顺序
        self.map = self.map[:,::-1]
        
        # #查看地图数据存储格式
        # plt.matshow(self.map, cmap=plt.cm.gray)
        # plt.show()

    def getIniPose(self):
        '''
            获取初始坐标点
        '''
        self.IniPose = rospy.wait_for_message("/amcl_pose", PoseWithCovarianceStamped,timeout=None)
        self.init_x = self.IniPose.pose.pose.position.x
        self.init_y = self.IniPose.pose.pose.position.y
        #获取对于矩阵中的原始点位置
        self.start_point = self.worldToMap(self.init_x,self.init_y)


        self.init_quaternions_z = self.IniPose.pose.pose.orientation.z
        self.init_quaternions_w = self.IniPose.pose.pose.orientation.w
        
    def getTarPose(self):
        '''
            获取目标坐标点
        '''
        self.TarPose = rospy.wait_for_message("/move_base_simple/goal", PoseStamped,timeout=None)
        self.tar_x = self.TarPose.pose.position.x
        self.tar_y = self.TarPose.pose.position.y
        self.final_point = self.worldToMap(self.tar_x,self.tar_y)
        self.tar_quaternions_x = self.TarPose.pose.orientation.x
        self.tar_quaternions_y = self.TarPose.pose.orientation.y
        self.tar_quaternions_z = self.TarPose.pose.orientation.z
        self.tar_quaternions_w = self.TarPose.pose.orientation.w
        

    def sendAstarPath(self):
        AstarPath = rospy.Publisher("AstarPath",Path,queue_size=15)
        init_path = Path()

        #设置发布频率
        rate = rospy.Rate(200)
        
        for i in range(len(self.pathList)):

            init_path.header.stamp = rospy.Time.now()
            init_path.header.frame_id = "map"

            current_point = PoseStamped()
            current_point.header.frame_id = "map"
            current_point.pose.position.x = pixwidth - self.pathList[i][0]*self.resolution
            current_point.pose.position.y = self.pathList[i][1]*self.resolution - pixheight
            current_point.pose.position.z = 0
            #角度
            current_point.pose.orientation.x = 0
            current_point.pose.orientation.y = 0
            current_point.pose.orientation.z = 0
            current_point.pose.orientation.w = 1

            init_path.poses.append(current_point)
            #发布消息
            AstarPath.publish(init_path)

            rate.sleep()
            i += 1
        time.sleep(0.5)

    def worldToMap(self,x,y):
        #将rviz地图坐标转换为栅格坐标
        #这里10.2和-4.6需要自动添加,目前不知道怎么添加
        mx = (int)((pixwidth-x) /self.resolution)
        my = (int)(-(-pixheight-y) /self.resolution)
        return [mx,my]





if __name__ == "__main__":
    getmap = pathPlanning()

你可能感兴趣的:(本科毕业设计,python,自动驾驶)