-version
-help
-server
-cp
非标准参数,也就是在JDK各个版本中可能会变动
-Xint 解释执行
-Xcomp 第一次使用就编译成本地代码
-Xmixed 混合模式,JVM自己来决定
使用得最多的参数类型
非标准化参数,相对不稳定,主要用于JVM调优和Debug
格式:-XX:[+-]
比如:-XX:+UseConcMarkSweepGC 表示启用CMS类型的垃圾回收器
-XX:+UseG1GC 表示启用G1类型的垃圾回收器
格式:-XX
比如:-XX:MaxGCPauseMillis=500
-Xms1000M等价于-XX:InitialHeapSize=1000M
-Xmx1000M等价于-XX:MaxHeapSize=1000M
-Xss100等价于-XX:ThreadStackSize=100所以这块也相当于是-XX类型的参数
java -XX:+PrintFlagsFinal -version > flags.txt
值得注意的是"="表示默认值,":="表示被用户或JVM修改后的值,有些我们自己没有修改的也有:这是因为jvm在运行时会自己适配,mangeable就表示实时修改的,一般要设置参数,可以先查看一下当前参数是什么,然后进行修改。
开发工具中设置比如IDEA,eclipse
运行jar包的时候:java -XX:+UseG1GC xxx.jar
web容器比如tomcat,可以在脚本中的进行设置
通过jinfo实时调整某个java进程的参数(参数只有被标记为manageable的flags可以被实时修改)
1.设置堆内存大小和参数打印
-Xmx100M -Xms100M -XX:+PrintFlagsFinal
2.查询+PrintFlagsFinal的值
:=true
3.查询堆内存大小MaxHeapSize
:= 104857600
4.换算
104857600(Byte)/1024=102400(KB)
102400(KB)/1024=100(MB)
5.结论
104857600是字节单位
单位换算:
1Byte(字节)=8bit(位)
1KB=1024Byte(字节)
1MB=1024KB
1GB=1024MB
1TB=1024GB
参数 | 含义 | 说明 |
-XX:CICompilerCount=3 | 最大并行编译数 | 如果设置大于1,虽然编译速度会提高,但是同样影响系统稳定性,会增加JVM崩溃的可能 |
-XX:InitialHeapSize=100M | 初始化堆大小 | 简写-Xms100M |
-XX:MaxHeapSize=100M | 最大堆大小 | 简写-Xms100M |
-XX:NewSize=20M | 设置年轻代的大小 | |
-XX:MaxNewSize=50M | 年轻代最大大小 | |
-XX:OldSize=50M | 设置老年代大小 | |
-XX:MetaspaceSize=50M | 设置方法区大小 | |
-XX:MaxMetaspaceSize=50M | 方法区最大大小 | |
-XX:+UseParallelGC | 使用UseParallelGC | 新生代,吞吐量优先 |
-XX:+UseParallelOldGC | 使用UseParallelOldGC | 老年代,吞吐量优先 |
-XX:+UseConcMarkSweepGC | 使用CMS | 老年代,停顿时间优先 |
-XX:+UseG1GC | 使用G1GC | 新生代,老年代,停顿时间优先 |
-XX:NewRatio | 新老生代的比值 | 比如-XX:Ratio=4,则表示新生代:老年代=1:4,也就是新生代占整个堆内存的1/5 |
-XX:SurvivorRatio | 两个S区和Eden区的比值 | 比如-XX:SurvivorRatio=8,也就是(S0+S1):Eden=2:8,也就是一个S占整个新生代的1/10 |
-XX:+HeapDumpOnOutOfMemoryError | 启动堆内存溢出打印 | 当JVM堆内存发生溢出时,也就是OOM,自动生成dump文件 |
-XX:HeapDumpPath=heap.hprof | 指定堆内存溢出打印目录 | 表示在当前目录生成一个heap.hprof文件 |
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:g1-gc.log | 打印出GC日志 | 可以使用不同的垃圾收集器,对比查看GC情况 |
-Xss128k | 设置每个线程的堆栈大小 | 经验值是3000-5000最佳 |
-XX:MaxTenuringThreshold=6 | 提升年老代的最大临界值 | 默认值为 15 |
-XX:InitiatingHeapOccupancyPercent | 启动并发GC周期时堆内存使用占比 | G1之类的垃圾收集器用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比. 值为 0 则表示”一直执行GC循环”. 默认值为 45. |
-XX:G1HeapWastePercent | G1最大停顿时间 | 暂停时间不能太小,太小的话就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。 |
-XX:ConcGCThreads=n | 并发垃圾收集器使用的线程数量 | 默认值随JVM运行的平台不同而不同 |
-XX:G1MixedGCLiveThresholdPercent=65 | 混合垃圾回收周期中要包括的旧区域设置占用率阈值 | 默认占用率为 65% |
-XX:G1MixedGCCountTarget=8 | 设置标记周期完成后,对存活数据上限为 G1MixedGCLIveThresholdPercent 的旧区域执行混合垃圾回收的目标次数 | 默认8次混合垃圾回收,混合回收的目标是要控制在此目标次数以内 |
-XX:G1OldCSetRegionThresholdPercent=1 | 描述Mixed GC时,Old Region被加入到CSet中 | 默认情况下,G1只把10%的Old Region加入到CSet中 |
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择。
它是一种单线程收集器,不仅仅意味着它只会使用一个CPU或者一条收集线程去完成垃圾收集工作,更重要的是其在进行垃圾收集的时候需要暂停其他线程。
优点:简单高效,拥有很高的单线程收集效率
缺点:收集过程需要暂停所有线程
算法:复制算法
适用范围:新生代
应用:Client模式下的默认新生代收集器
Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,不同的是采用"标记-整理算法",运行过程和Serial收集器一样。
可以把这个收集器理解为Serial收集器的多线程版本,还是会暂停业务线程,只是将GC的单线程回收变成了多线程回收,如果服务器只有单核这个反而变慢
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器,看上去和ParNew一样,但是Parallel Scanvenge更关注系统的吞吐量。
吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集时间)
比如虚拟机总共运行了100分钟,垃圾收集时间用了1分钟,吞吐量=(100-1)/100=99%。
若吞吐量越大,意味着垃圾收集的时间越短,则用户代码可以充分利用CPU资源,尽快完成程序的运算任务。
-XX:MaxGCPauseMillis控制最大的垃圾收集停顿时间,保证GC尽可能在这个时间内回收,如果超过了这个时间,就会牺牲吞吐量和Eden区的大小,保证这个时间内回收完成,会导致频繁的GC
-XX:GCRatio直接设置吞吐量的大小。
Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和标记-整理算法进行垃圾回收,也是更加关注系统的吞吐量。
官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html#concurrent_mark_sweep_cms_collector
CMS(Concurrent Mark Sweep)收集器是一种以获取 最短回收停顿时间为目标的收集器。
采用的是"标记-清除算法",整个过程分为4步
可以一定程度上的缓解Stop The World
(1)初始标记 CMS initial mark 标记GC Roots直接关联对象,不用,速度并发执行,速度很快,会STW
(2)并发标记 CMS concurrent mark 进行GC 找出所有的引用链上的剩余对象,比较耗时 并发执行
(3)重新标记 CMS remark ,修改并发标记因用户程序变动的内容,就是将第二步所产生的垃圾进行二次标记,由于第一步已经标记了,所以这不并不耗时,会STW
(4)并发清除 CMS concurrent sweep 清除不可达对象回收空间,同时有新垃圾产生,留着下次清理称为浮动垃圾,并发执行
由于整个过程中,并发标记和并发清除,收集器线程可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行的。
优点:并发收集、低停顿
缺点:产生大量空间碎片、并发阶段会降低吞吐量
官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html#garbage_first_garbage_collection
使用G1收集器时,Java堆的内存布局与就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
每个Region大小都是一样的,可以是1M到32M之间的数值,但是必须保证是2的n次幂
如果对象太大,一个Region放不下[超过Region大小的50%],那么就会直接放到H中
设置Region大小:-XX:G1HeapRegionSize=
所谓Garbage-Frist,其实就是优先回收垃圾最多的Region区域
1)分代收集(仍然保留了分代的概念)
2)空间整合(整体上属于“标记-整理”算法,不会导致空间碎片)
3)可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒)
初始标记(Initial Marking)
标记以下GC Roots能够关联的对象,并且修改TAMS的值,需要暂停用户线程
并发标记(Concurrent Marking)
从GC Roots进行可达性分析,找出存活的对象,与用户线程并发执行
最终标记(Final Marking)
修正在并发标记阶段因为用户程序的并发执行导致变动的数据,需暂停用户线程
筛选回收(Live Data Counting and Evacuation)
对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划
官网:
https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
JDK11新引入的ZGC收集器,不管是物理上还是逻辑上,ZGC中已经不存在新老年代的概念了
会分为一个个page,当进行GC操作时会对page进行压缩,因此没有碎片问题
只能在64位的linux上使用,目前用得还比较少
(1)可以达到10ms以内的停顿时间要求
(2)支持TB级别的内存
(3)堆内存变大后停顿时间还是在10ms以内
Serial和Serial Old
只能有一个垃圾回收线程执行,用户线程暂停。
适用于内存比较小的嵌入式设备。
Parallel Scanvenge、Parallel Old
多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
适用于科学计算、后台处理等若交互场景。
CMS、G1
用户线程和垃圾收集线程同时执行(但并不一定是并行的,可能是交替执行的),垃圾收集线程在执行的时候不会停顿用户线程的运行。
适用于相对时间有要求的场景,比如Web。
这两个指标也是评价垃圾回收器好处的标准。
停顿时间
垃圾收集器 进行 垃圾回收终端应用执行响应的时间
停顿时间越短就越适合需要和用户交互的程序,良好的响应速度能提升用户体验;
吞吐量
运行用户代码时间/(运行用户代码时间+垃圾收集时间)
高吞吐量则可以高效地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
官网
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28
优先调整堆的大小让服务器自己来选择
如果内存小于100M,使用串行收集器
如果是单核,并且没有停顿时间要求,使用串行或JVM自己选
如果允许停顿时间超过1秒,选择并行或JVM自己选
如果响应时间最重要,并且不能超过1秒,使用并发收集器
对于G1收集
JDK 7开始使用,JDK 8非常成熟,JDK 9默认的垃圾收集器,适用于新老生代。
(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长
全称Remembered Set,记录维护Region中对象的引用关系
试想,在G1垃圾收集器进行新生代的垃圾收集时,也就是Minor GC,假如该对象被老年代的Region中所引用,这时候新生代的该对象就不能被回收,怎么记录呢?
不妨这样,用一个类似于hash的结构,key记录region的地址,value表示引用该对象的集合,这样就能知道该对象被哪些老年代的对象所引用,从而不能回收。
(1)串行
-XX:+UseSerialGC
-XX:+UseSerialOldGC
(2)并行(吞吐量优先):
-XX:+UseParallelGC
-XX:+UseParallelOldGC
(3)并发收集器(响应时间优先)
-XX:+UseConcMarkSweepGC
-XX:+UseG1GC