Dropwizard-Metric学习

Metrics 指标

1.Meter TPS计算器

meter是用来测量随时间推移的事件速率(例如:TPS、QPS)。这个指标能反应系统当前的处理能力,帮助我们判断资源是否已经不足。Meters本身是一个自增计数器。除了平均速率,meter还追踪了1、5和15分钟的移动平均值。
应用运行的过程中,在console中反馈的信息:

-- Meters ----------------------------------------------------------------------
request
             count = 21055
         mean rate = 133.35 events/second
     1-minute rate = 121.66 events/second
     5-minute rate = 36.99 events/second
    15-minute rate = 13.33 events/second

Gauges 度量

除了Metrics提供的几个度量类型,我们可以通过Gauges完成自定义的度量类型。比方说很简单的,我们想看我们缓存里面的数据大小,就可以自己定义一个Gauges。

public class QueueManager {
    private final Queue queue;

    public QueueManager(MetricRegistry metrics, String name) {
        this.queue = new Queue();
        metrics.register(MetricRegistry.name(QueueManager.class, name, "size"),
                         new Gauge() {
                             @Override
                             public Integer getValue() {
                                 return queue.size();
                             }
                         });
    }
}

这样Metrics就会一直监控Queue的大小。

Counter 计数器

Counter的本质就是一个AtomicLong实例,可以增加或者减少值,可以用它来统计队列中Job的总数。

private final Counter pendingJobs = metrics.counter(name(QueueManager.class, "pending-jobs"));

public void addJob(Job job) {
    pendingJobs.inc();
    queue.offer(job);
}

public Job takeJob() {
    pendingJobs.dec();
    return queue.take();
}

Histogram 直方图数据

直方图是一种非常常见的统计图表,Metrics通过这个Histogram这个度量类型提供了一些方便实时绘制直方图的数据。直方图度量流中的数据大小,例如

private final Histogram responseSizes = metrics.histogram(name(RequestHandler.class, "response-sizes"));

public void handleRequest(Request request, Response response) {
    // etc
    responseSizes.update(response.getContent().length);
}

直方图会度量reponses中的字节大小

-- Histograms ------------------------------------------------------------------
response-sizes
             count = 21051
               min = 0
               max = 9
              mean = 4.55
            stddev = 2.88
            median = 4.00
              75% <= 7.00
              95% <= 9.00
              98% <= 9.00
              99% <= 9.00
            99.9% <= 9.00

Timer 计时器

Timer是一个Meter和Histogram的组合。这个度量单位可以比较方便地统计请求的速率和处理时间。对于接口中调用的延迟等信息的统计就比较方便了。如果发现一个方法的RPS(请求速率)很低,而且平均的处理时间很长,那么这个方法八成出问题了。
获取一个Timer

@Bean
public Timer responses(MetricRegistry metrics) {
    return metrics.timer("executeTime");
}

在需要统计信息的位置使用这样的代码:

final Timer.Context context = responses.time();
try {
    // handle request
} finally {
    context.stop();
}

console中就会实时返回这个Timer的信息:

-- Timers ----------------------------------------------------------------------
executeTime
             count = 21061
         mean rate = 133.39 calls/second
     1-minute rate = 122.22 calls/second
     5-minute rate = 37.11 calls/second
    15-minute rate = 13.37 calls/second
               min = 0.00 milliseconds
               max = 0.01 milliseconds
              mean = 0.00 milliseconds
            stddev = 0.00 milliseconds
            median = 0.00 milliseconds
              75% <= 0.00 milliseconds
              95% <= 0.00 milliseconds
              98% <= 0.00 milliseconds
              99% <= 0.00 milliseconds
            99.9% <= 0.01 milliseconds

数据流向图

Referer

dropwizard metric
JVM上的实时监控类库

你可能感兴趣的:(Dropwizard-Metric学习)