下面内容来自百度百科
- 二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个节点最多只能有两棵子树,且有左右之分 。
- 二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个节点 。
- 常见的树结构包括二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)、AVL树、红黑树等。树的应用非常广泛,例如在数据库中的索引结构、文件系统的组织、图形算法中的优先队列等。
注意: 树形结构中,子树之间不能有交集,否则就不是树形结构
树(Tree)是一种重要的数据结构,它在计算机科学中被广泛应用。树是由节点(Node)和边(Edge)组成的集合,节点之间通过边相连。树的一个特点是它是一个层次结构,顶部的节点称为根节(Root),最底部的节点称为叶节点(Leaf),中间的节点称为内部节点(Internal Node)。
节点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点: 度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点: 度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点: 若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点: 一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点: 具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度: 一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次: 从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度: 树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点: 双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先: 从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙: 以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林: 由m(m>0)棵互不相交的树的集合称为森林;
儿子表示法(Child Representation):
A
/ \
B C
/ \
D E
父母表示法(Parent Representation):
codeA -> NULL
B -> A
C -> A
D -> B
E -> B
Linux
的同学就知道这个linux是一个树状结构,根就是/
1
/ \
2 3
/ \ / \
4 5 6 7
1
/ \
2 3
/ \ /
4 5 6
4
/ \
2 6
/ \ / \
1 3 5 7
例如:
1
/ \
2 3
/ \ / \
4 5 6 7
[1, 2, 3, 4, 5, 6, 7]
struct TreeNode {
int data; // 节点的数据
TreeNode* left; // 指向左子节点的指针
TreeNode* right; // 指向右子节点的指针
};
1
/ \
2 3
/ \ / \
4 5 6 7
每个节点的 left
和 right
指针分别指向其左子节点和右子节点。这种存储结构更直观,但相对于顺序存储结构,可能会占用更多的内存空间。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
我们先回顾一下二叉树的概念:
- 空树
- 非空:根节点,根节点的左子树、根节点的右子树组成的。
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
根
左子树
右子树
左子树
根
右子树
左子树
右子树
根
构建一棵树
BTNode* BuyTreeNode(int x)
{
BTNode*node = (BTNode*)malloc(sizeof(BTNode));
assert(node);
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
BTNode* CreateTree()
{
BTNode* node1 = BuyTreeNode(1);
BTNode* node2 = BuyTreeNode(2);
BTNode* node3 = BuyTreeNode(3);
BTNode* node4 = BuyTreeNode(4);
BTNode* node5 = BuyTreeNode(5);
BTNode* node6 = BuyTreeNode(6);
node1->left = node2;
node1->right = node4;
node2->left = node3;
node4->left = node5;
node4->right = node6;
return node1;
}
二叉树的前序遍历
void BinaryTreePrevOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
printf("%d ", root->data);
BinaryTreePrevOrder(root->left);
BinaryTreePrevOrder(root->right);
}
二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
BinaryTreeInOrder(root->left);
printf("%d ", root->data);
BinaryTreeInOrder(root->right);
}
二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
BinaryTreePostOrder(root->left);
BinaryTreePostOrder(root->right);
printf("%d ", root->data);
}
测试
int main()
{
BTNode* root = CreateTree();
printf("二叉树前序遍历:\n");
BinaryTreePrevOrder(root);
printf("\n");
printf("二叉树中序遍历:\n");
BinaryTreeInOrder(root);
printf("\n");
printf("二叉树后序遍历:\n");
BinaryTreePostOrder(root);
printf("\n");
return 0;
}