导读:如果你想学Python,或者你刚开始学习Python,那么你可能会问:“我能用Python做什么?”
这个问题不好回答,因为Python有很多用途。
但是随着时间,我发现有Python主要有以下三大主要应用:
Web开发
Django和Flask等基于Python的Web框架最近在Web开发中非常流行。
这些Web框架可以帮助你用Python编写服务器端代码(后端代码)。这是在你的额服务器上运行的代码,而不是运行在用户设备和浏览器的代码(前端代码)。
因为用Web框架可以更容易地构建通用后端逻辑。这包括将不同的URL映射到Python代码块,处理数据库以及生成用户在浏览器中看到的HTML文件。
Django和Flask是最流行的两种Python Web框架。如果你刚刚入门,我建议使用其中一种。
Gareth Dwyer 关于这个问题有一篇出色的文章,在这里我引用几段:
主要区别
*换句话说,如果你是初学者,Flask可能是更好的选择,因为它要掌握的组件更少。此外,如果你想要更多的定制,那就选Flask。
根据我的数据工程师朋友Jonathan T Ho的说法,由于Flask 的灵活性,在创建REST API时,Flask 比Django 更适合。
另一方面,如果你想直接构建一些东西,Django可能会让你更快实现。
数据科学,这里包括机器学习,数据分析和数据可视化。
假设你想开发一个能够自动检测图片内容的程序。给出图1,你希望程序识别这是一只狗。
▲图1
给出图2,希望程序能识别这是一张桌子。
▲图2
你可能会说,我可以写一些代码来做到这点。例如,如果图片中有很多浅棕色像素,那么可以识别是狗。
或者可以检测图片中的边缘,如果有很多直的边缘,那么就是桌子。
但这种方法很快就不好用了。如果图片中的狗不是棕色毛的怎么办?如果图片只显示桌子的圆形部分怎么办?
这里就需要用到机器学习了。
机器学习通过实现算法,该算法能够自动检测输入中的模式。
例如,你将1000张狗的图片和1000张桌子的图片输入给机器学习算法,让它掌握狗和桌子间的区别。那么当你给出新的图片让它识别是狗还是桌子时,它就能够进行判断。
这有点类似孩子学习新事物的方式。孩子是如何学习认知狗或桌子的呢?就是通过大量的例子。
你不会明确告诉孩子:“如果某个毛茸茸的东西有浅棕色的毛发,那么就可能是狗。”
你会说,“这是狗,这也是狗。而这是桌子,那个也是桌子。“
机器学习算法的方式大致相同。
我们可以将相同的想法应用于:
你听过的热门机器学习算法包括:
你可以使用上述任何算法来解决前面提到的图片标签问题。
有一些热门的机器学习库和Python框架。其中两个最热门的是scikit-learn和TensorFlow。
scikit-learn带有一些内置的热门机器学习算法。
TensorFlow是一个低级库,能让你创建自定义机器学习算法。
如果你刚开始进行机器学习项目,我会建议你先从scikit-learn开始。如果你开始遇到效率问题,那么可以使用TensorFlow。
假设你在一家在线销售产品的公司工作。作为数据分析师,你会绘制这样的条形图。
▲条形图1 - 用Python生成
从这张图中可以看到在某个周日,男性用户购买了400多件产品,女性用户购买了350件产品。
作为数据分析师,对此你会提出一些可能的解释。明显的解释是,该产品在男性用户中更受欢迎。另一种是样本量太小,而这种差异是偶然的。还可能呢是由于某种原因,男性往往在周日才购买该产品。
为了理解哪种解释是正确的,你可以绘制另一个图。
▲折线图1 - 用Python生成
不止看周日的数据,还要看到一周的数据。从这张图表中可以看出,在不同的日子里这种差异比较一致。
从这个分析中你会得出结论:这种产品在男性中比在女性中更受欢迎。
但如果你看到像这样的图表呢?
▲折线图2 - 用Python生成
那么,怎么解释周日的差异呢?
你可能会说,也许出于某种原因男性只在周日才会更多地购买这款产品。或许这只是巧合。
我在谷歌和微软工作时所做的数据分析工作与这个例子非常相似,只是更复杂一些。在谷歌时我使用Python进行分析,而我在微软使用JavaScript。
在这两家公司我都使用SQL从数据库中提取数据。然后,我用Python和Matplotlib(在谷歌)或JavaScript和D3.js(在微软)来可视化和分析这些数据。
进行数据可视化时,Matplotlib是非常热门的库。
Matplotlib很棒,因为:
容易上手
seaborn等库是基于它的,学习Matplotlib可以帮助你以后学习其他库。
你首先应该了解数据分析和可视化的基础知识。在学习了数据分析和可视化的基础知识之后,学习统计学基础知识也将会很有帮助。
脚本通常是指编写能够自动执行简单任务的小程序。
我曾经在日本的一家小型创业公司工作,公司有邮件支持系统,这用来回复客户通过邮件发送给我们的问题。
在那儿工作时,我的任务是计算包含关键字的邮件数量,以便分析我们收到的电子邮件。这可以手动完成,但我写了一个简单的脚本来自动执行此任务。
当时我们使用了Ruby,但对于这类任务Python也是不错的选择。Python适合这类任务,因为它语法简单,易于编写,而且进行测试也很快。
我不是这方面的专家,但我知道Python可以与Rasberry Pi一起用,在硬件爱好者中很流行。
你可以用PyGame来开发游戏,但这并不是最受欢迎的游戏引擎。你可以用它来开发业余爱好项目,但如果你对游戏开发很认真,建议不要选它。
我建议使用Unity的C#,这是最受欢迎的游戏引擎之一。它能让你为许多平台开发游戏,包括Mac、Windows、iOS和Android。
你可以用Python的Tkinter,但这并不是最热门的选择。Java,C#和C ++等语言似乎更受欢迎。
最近,一些公司也开始使用JavaScript来开发桌面应用程序。例如,Slack的桌面应用是Electron构建的。它能让你用JavaScript构建桌面应用程序。
就个人而言,如果我要开发桌面应用,我会选择使用JavaScript。它能让你重新使用网络版本的一些代码。
当然,我并不是桌面应用的专家,所以如果你有不同的看法,评论中告诉我。
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
因篇幅有限,仅展示部分资料
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】