【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)

文章目录

  • 5.1 树的基本概念
    • 5.1.1 树的定义
    • 5.1.2 森林的定义
    • 5.1.3 树的术语
  • 5.2 二叉树
  • 5.3 树
    • 5.3.1 树的存储结构
      • 1. 理论基础
      • 2. 典型实例
      • 3. Father链接结构
      • 4. 儿子链表链接结构
      • 5. 左儿子右兄弟链接结构
    • 5.3.2 获取结点的算法
    • 5.3.3 树和森林的遍历
      • 1. 先根遍历(递归、非递归)
      • 2. 后根遍历(递归)
        • a.理论
        • b. ADL算法PostOrder
        • c. 代码实现
      • 3. 后根遍历(非递归)
        • a. ADL算法NPO
        • b. NPO算法解析
        • c. 代码实现
      • 3. 森林的遍历
      • 4. 代码整合

5.1 树的基本概念

5.1.1 树的定义

  • 一棵树是结点的有限集合T:
    • 若T非空,则:
      • 有一个特别标出的结点,称作该树的,记为root(T);
      • 其余结点分成若干个不相交的非空集合T1, T2, …, Tm (m>0),其中T1, T2, …, Tm又都是树,称作root(T)的子树
    • T 空时为空树,记作root(T)=NULL。

5.1.2 森林的定义

  一个森林是0棵或多棵不相交(非空)树的集合,通常是一个有序的集合。换句话说,森林由多个树组成,这些树之间没有交集,且可以按照一定的次序排列。在森林中,每棵树都是独立的,具有根节点和子树,树与树之间没有直接的连接关系。
  森林是树的扩展概念,它是由多个树组成的集合。在计算机科学中,森林也被广泛应用于数据结构和算法设计中,特别是在图论和网络分析等领域。
在这里插入图片描述

5.1.3 树的术语

  • 父亲(parent)、儿子(child)、兄弟(sibling)、后裔(descendant)、祖先(ancestor)
  • 度(degree)、叶子节点(leaf node)、分支节点(internal node)
  • 结点的层数
  • 路径、路径长度、结点的深度、树的深度

参照前文:【数据结构】树与二叉树(一):树(森林)的基本概念:父亲、儿子、兄弟、后裔、祖先、度、叶子结点、分支结点、结点的层数、路径、路径长度、结点的深度、树的深度

5.2 二叉树

5.3 树

5.3.1 树的存储结构

1. 理论基础

2. 典型实例

3. Father链接结构

4. 儿子链表链接结构

【数据结构】树与二叉树(十八):树的存储结构——Father链接结构、儿子链表链接结构

5. 左儿子右兄弟链接结构

【数据结构】树与二叉树(十九):树的存储结构——左儿子右兄弟链接结构(树、森林与二叉树的转化)
  左儿子右兄弟链接结构通过使用每个节点的三个域(FirstChild、Data、NextBrother)来构建一棵树,同时使得树具有二叉树的性质。具体来说,每个节点包含以下信息:

  1. FirstChild: 存放指向该节点的大儿子(最左边的子节点)的指针。这个指针使得我们可以迅速找到一个节点的第一个子节点。
  2. Data: 存放节点的数据。
  3. NextBrother: 存放指向该节点的大兄弟(同一层中右边的兄弟节点)的指针。这个指针使得我们可以在同一层中迅速找到节点的下一个兄弟节点。

  通过这样的结构,整棵树可以用左儿子右兄弟链接结构表示成一棵二叉树。这种表示方式有时候被用于一些特殊的树结构,例如二叉树、二叉树的森林等。这种结构的优点之一是它更紧凑地表示树,而不需要额外的指针来表示兄弟关系。
在这里插入图片描述

   A
  /|\
 B C D
  / \
 E   F
A
|
B -- C -- D
     |
     E -- F

即:

      A
     / 
    B   
    \
	  C
  	 / \ 
  	E   D
  	 \
  	  F

在这里插入图片描述

5.3.2 获取结点的算法

【数据结构】树与二叉树(二十):树获取大儿子、大兄弟结点的算法(GFC、GNB)

5.3.3 树和森林的遍历

【数据结构】树与二叉树(七):二叉树的遍历(先序、中序、后序及其C语言实现)

1. 先根遍历(递归、非递归)

在这里插入图片描述

【数据结构】树与二叉树(廿一):树和森林的遍历——先根遍历(递归算法PreOrder、非递归算法NPO)

2. 后根遍历(递归)

a.理论

在这里插入图片描述

b. ADL算法PostOrder

【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)_第1张图片

  1. 基本条件检查:

    • IF t=NULL THEN RETURN.:如果树的根节点 t 为空,直接返回,递归的出口条件。
  2. 递归调用子树的后根遍历:

    • PostOrder(t.child).:递归调用后根遍历算法,对当前节点 t 的第一个孩子进行遍历。
  3. 迭代调用右兄弟节点的后根遍历:

    • WHILE child≠∧ DO:使用 WHILE 循环,判断当前节点的第一个孩子是否存在(child≠∧)。
      • PostOrder(child).:递归调用先根遍历算法,对当前节点 child 进行遍历。
      • GNB(child.child).:调用算法 GNB 获取当前节点 child 的下一个兄弟节点,然后继续遍历。
  4. 打印根节点数据:

    • PRINT(Data(t)).:打印当前树节点 t 的数据。
        通过递归地调用后根遍历算法,依次访问树的根节点、根节点的孩子节点、孩子节点的兄弟节点……以此类推,完成对整个树的后根遍历。
c. 代码实现
void PostOrder(TreeNode* t) {
    if (t == NULL) {
        return;
    }

    // 递归调用子树的后根遍历
    TreeNode* child = getFirstChild(t);
    while (child != NULL) {
        PostOrder(child);
        // 迭代调用右兄弟节点的后根遍历
        child = getNextBrother(child);
    }

    // 打印当前树节点的数据
    printf("%c ", t->data);
}

3. 后根遍历(非递归)

a. ADL算法NPO
b. NPO算法解析

暂时仅提供c语言代码,ADL语言及代码解析,有缘再见……

c. 代码实现
// 后根遍历的非递归算法
void NorecPostOrder(TreeNode* root) {
    if (root == NULL) {
        return;
    }

    TreeNode* stack1[100];
    TreeNode* stack2[100];
    int top1 = -1;
    int top2 = -1;

    TreeNode* p = root;
    stack1[++top1] = p;

    while (top1 != -1) {
        p = stack1[top1--];
        stack2[++top2] = p;

        TreeNode* child = getFirstChild(p);
        while (child != NULL) {
            stack1[++top1] = child;
            child = getNextBrother(child);
        }
    }

    while (top2 != -1) {
        printf("%c ", stack2[top2--]->data);
    }
}

  • 参数:

    • root: 树的根节点。
  • 局部变量:

    • stack[100]: 用于模拟栈的数组,存储待访问的节点。

3. 森林的遍历

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4. 代码整合

#include 
#include 

// 定义树节点
typedef struct TreeNode {
    char data;
    struct TreeNode* firstChild;
    struct TreeNode* nextBrother;
} TreeNode;

// 创建树节点
TreeNode* createNode(char data) {
    TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));
    if (newNode != NULL) {
        newNode->data = data;
        newNode->firstChild = NULL;
        newNode->nextBrother = NULL;
    }
    return newNode;
}

// 释放树节点及其子树
void freeTree(TreeNode* root) {
    if (root != NULL) {
        freeTree(root->firstChild);
        freeTree(root->nextBrother);
        free(root);
    }
}

// 算法GFC:获取大儿子结点
TreeNode* getFirstChild(TreeNode* p) {
    if (p != NULL && p->firstChild != NULL) {
        return p->firstChild;
    }
    return NULL;
}

// 算法GNB:获取下一个兄弟结点
TreeNode* getNextBrother(TreeNode* p) {
    if (p != NULL && p->nextBrother != NULL) {
        return p->nextBrother;
    }
    return NULL;
}

/* 使用已知的getFirstChild和getNextBrother函数实现后根遍历以t为根指针的树。*/
void PostOrder(TreeNode* t) {
    if (t == NULL) {
        return;
    }

    // 递归调用子树的后根遍历
    TreeNode* child = getFirstChild(t);
    while (child != NULL) {
        PostOrder(child);
        // 迭代调用右兄弟节点的后根遍历
        child = getNextBrother(child);
    }

    // 打印当前树节点的数据
    printf("%c ", t->data);
}

// 后根遍历的非递归算法
void NorecPostOrder(TreeNode* root) {
    if (root == NULL) {
        return;
    }

    TreeNode* stack1[100];
    TreeNode* stack2[100];
    int top1 = -1;
    int top2 = -1;

    TreeNode* p = root;
    stack1[++top1] = p;

    while (top1 != -1) {
        p = stack1[top1--];
        stack2[++top2] = p;

        TreeNode* child = getFirstChild(p);
        while (child != NULL) {
            stack1[++top1] = child;
            child = getNextBrother(child);
        }
    }

    while (top2 != -1) {
        printf("%c ", stack2[top2--]->data);
    }
}

int main() {
    // 构建左儿子右兄弟链接结构的树
    TreeNode* A = createNode('A');
    TreeNode* B = createNode('B');
    TreeNode* C = createNode('C');
    TreeNode* D = createNode('D');
    TreeNode* E = createNode('E');
    TreeNode* F = createNode('F');

    A->firstChild = B;
    B->nextBrother = C;
    C->nextBrother = D;
    C->firstChild = E;
    E->nextBrother = F;

    // 使用递归后根遍历算法
    printf("Recursive Postorder: \n");
    PostOrder(A);
    printf("\n");

    // 使用非递归后根遍历算法
    printf("Non-recursive PostOrder: \n");
    NorecPostOrder(A);
    printf("\n");

    // 释放树节点
    freeTree(A);

    return 0;
}

【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)_第2张图片

你可能感兴趣的:(数据结构,数据结构,算法,树,后根遍历,c语言)