基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试

拉钩网,智联招聘,前程无忧,猎聘数据采集

  • 一、Playwright——使用起来比Selenium更加方便的自动化采集工具
    • 1.Playwright 库的安装
    • 2.Playwright 浏览器的安装
    • 3.Playwright 功能测试
  • 二、拉勾网——招聘网站的数据采集
    • 1.用端口浏览器打开网站
    • 2.分析网站并用代码提取
    • 3.运行代码等待得到提取结果
  • 三、智联招聘——招聘网站的数据采集
    • 1.用端口浏览器打开网站
    • 2.分析网站并用代码提取
    • 3.运行代码等待得到提取结果
  • 四、前程无忧——招聘网站的数据采集
    • 1.用端口浏览器打开网站
    • 2.分析网站并用代码提取
      • 滑块验证
      • 完整代码
    • 3.运行代码等待得到提取结果
  • 五、猎聘——招聘网站的数据采集
    • 1.用端口浏览器打开网站
    • 2.分析网站并用代码提取
    • 3.运行代码等待得到提取结果


一、Playwright——使用起来比Selenium更加方便的自动化采集工具

1.Playwright 库的安装

playwright的安装和测试 安装前置条件 PyPi环境或者Anaconda环境

PyPi安装方式

# 命令行输入
pip install pytest-playwright

Anaconda安装方式

# 命令行输入
conda config --add channels conda-forge
conda config --add channels microsoft
conda install playwright

2.Playwright 浏览器的安装

playwright附带浏览器配置功能,免去了下载selenium中下载对应版本开发版浏览器的步骤,在这里只需要一步就可以
PyPi/Anaconda安装方式

# 命令行输入
playwright install

记录好浏览器的安装地址 我的安装地址为 C:\Users\Administrator\AppData\Local\ms-playwright
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第1张图片

3.Playwright 功能测试

测试代码生成功能 打开bilibili

# 命令行输入
playwright codegen

代码运行结果
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第2张图片

测试是否能够打开百度 3s后自动关闭

import time
from playwright.sync_api import Playwright, sync_playwright

def run(playwright: Playwright) -> None:
    browser = playwright.chromium.launch(headless=False)
    context = browser.new_context()
    page = context.new_page()
    page.goto("https://www.baidu.com/")
    time.sleep(3)
    context.close()
    browser.close()

with sync_playwright() as playwright:
    run(playwright)

代码运行结果
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第3张图片连接已打开浏览器 跳过登入验证步骤
首先进入第二步下载的浏览器文件夹 我这里是 C:\Users\Administrator\AppData\Local\ms-playwright
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第4张图片
在这里我们看见 chromiumffmpegfirefoxwebkit 四种浏览器自动化测试软件 在这里我们已谷歌浏览器 chromium 为例子
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第5张图片
打开得到命令行窗口,发现其路径正好为文件夹路径,在这里我们通过命令行打开浏览器并且同时给浏览器分配一个端口,这样我们便可以对新打开的浏览器进行控制
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第6张图片
在命令行窗口输入 这里6568可以替换为你想要的端口

# 命令行输入
chrome.exe --remote-debugging-port=6568

代码运行结果,发现打开了一个浏览器
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第7张图片
不要关掉这个浏览器,如果关掉再重复一遍上述操作,接下来看看是否可以使用代码控制这个浏览器,用代码打印一下浏览器的标题

import time
from playwright.sync_api import Playwright, sync_playwright


def run(playwright: Playwright) -> None:
	# 这里 http://localhost:6568 中 6568 替换为自己上一步设置的端口
    browser = playwright.chromium.connect_over_cdp('http://localhost:6568')
    page = browser.contexts[0].pages[0]
    print(page.title())


with sync_playwright() as playwright:
    run(playwright)

运行结果如下
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第8张图片
完成!

如果上述流程都能运行成功,可以开始下一步操作


二、拉勾网——招聘网站的数据采集

招聘网站由于对数据非常重视,做了许多的反爬取策略,如果一个个逆向时间开销很大,因此我们在这里使用自动化测试软件对招聘信息进行提取,虽然速度相较于 requests 慢,但是还是可以得到结果滴!在这里我们以拉钩网为例 https://www.lagou.com/

1.用端口浏览器打开网站

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第9张图片
登入网站,在搜索框输入信息,这里以查询 新闻 就业情况为例子,在搜索框内输入 新闻
基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第10张图片
框里面就是我们需要的数据,现在通过代码进行提取

2.分析网站并用代码提取

import os
import time
import pandas as pd
from playwright.sync_api import Playwright, sync_playwright


def name_file(name):
    ix = 0
    while True:
        filename = f'{name}_{ix}.xlsx'
        if os.path.exists(filename):
            ix += 1
        else:
            return filename


def get_new_page_info(context, Locator):
    with context.expect_page() as new_page_info:
        Locator.click()
    new_page = new_page_info.value
    new_page.wait_for_load_state()
    position_name = new_page.locator('xpath=//*[@id="__next"]/div[2]/div[1]/div/div[1]/div[1]/h1/span/span/span[1]').text_content()
    job_company = new_page.locator('xpath=//*[@id="job_company"]').text_content()
    job_request = new_page.locator('xpath=//*[@id="__next"]/div[2]/div[1]/div/div[1]/dd/h3').text_content()
    salary = new_page.locator('xpath=//*[@id="__next"]/div[2]/div[1]/div/div[1]/div[1]/h1/span/span/span[2]').text_content()
    position_label = new_page.locator('xpath=//*[@id="__next"]/div[2]/div[1]/div/div[1]/dd/ul').text_content()
    content = new_page.locator('xpath=//*[@id="job_detail"]').text_content()
    new_page.close()
    return [position_name, job_company, job_request, salary, position_label, content]


def run(playwright: Playwright) -> None:
    browser = playwright.chromium.connect_over_cdp('http://localhost:6568')
    context = browser.contexts[0]
    page = context.pages[0]

    info_list = []
    try:
        for i in range(30):
            Locators = page.locator('xpath=//*[@id="openWinPostion"]')
            for Locator in Locators.all():
                info = get_new_page_info(context, Locator)
                time.sleep(0.3)
                print(info)
                info_list.append(info)
            page.get_by_text('下一页').click()
            page.wait_for_load_state()

    except:
        pass

    df = pd.DataFrame(info_list, columns=['position_name', 'job_company', 'job_request', 'salary', 'position_label', 'content'])
    df.to_excel(name_file('拉钩'), index=False)


with sync_playwright() as playwright:
    run(playwright)

3.运行代码等待得到提取结果

运行后得到结果

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第11张图片
完成!


三、智联招聘——招聘网站的数据采集

1.用端口浏览器打开网站

2.分析网站并用代码提取

import os
import time
import pandas as pd
from playwright.sync_api import Playwright, sync_playwright


def name_file(name):
    ix = 0
    while True:
        filename = f'{name}_{ix}.xlsx'
        if os.path.exists(filename):
            ix += 1
        else:
            return filename


def get_new_page_info(context, Locator):
    with context.expect_page() as new_page_info:
        Locator.click()
    new_page = new_page_info.value
    new_page.wait_for_load_state()
    position_name = new_page.locator('xpath=//*[@id="root"]/div/div[2]/div[2]/div/div[2]/span/span').text_content()
    job_company = new_page.locator('xpath=//div[@class="intro"]').text_content()
    job_request = new_page.locator('xpath=//p[@class="muilt-infos"]').text_content()
    salary = new_page.locator('xpath=//*[@id="root"]/div/div[2]/div[2]/div/div[3]/div[1]/p[2]/span').text_content()
    position_label = ''
    content = new_page.locator('xpath=//div[@class="describe"]').text_content()
    new_page.close()
    return [position_name, job_company, job_request, salary, position_label, content]


def run(playwright: Playwright) -> None:
    browser = playwright.chromium.connect_over_cdp('http://localhost:6568')
    context = browser.contexts[0]
    page = context.pages[0]

    info_list = []
    try:
        for i in range(30):
            Locators = page.locator('xpath=//*[@id="pane-reletive"]/div/div/div/div[1]')
            for Locator in Locators.all():
                info = get_new_page_info(context, Locator)
                time.sleep(0.3)
                print(info)
                info_list.append(info)
            page.get_by_text('下一页').click()
            time.sleep(1)
            page.wait_for_load_state()
    except Exception as e:
        print(e)

    df = pd.DataFrame(info_list, columns=['position_name', 'job_company', 'job_request', 'salary', 'position_label', 'content'])
    df.to_excel(name_file('智联'), index=False)


with sync_playwright() as playwright:
    run(playwright)

3.运行代码等待得到提取结果

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第12张图片


四、前程无忧——招聘网站的数据采集

1.用端口浏览器打开网站

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第13张图片

2.分析网站并用代码提取

滑块验证

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第14张图片
在这里我们发现访问次数超过一定数量时,会一直出现滑块验证,因此我们需要在代码中加入滑块移动模块

def sliding_path(page):
    # 定义滑块和包含容器
    slider_box = page.locator('xpath=//*[@id="nc_1_n1z"]').bounding_box()
    contain_box = page.locator('xpath=//*[@id="nc_1__scale_text"]/span').bounding_box()
    distance = contain_box['width']
    page.mouse.move(x=int(slider_box['x']), y=slider_box['y'] + slider_box['height'] / 2)
    page.mouse.down()
    size = 1000
    scale = 3
    tolerance = distance * 0.2

    # 超过
    lst = np.linspace(0, distance + tolerance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]

    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=3)

    size = 100
    scale = 10

    # 返回
    lst = np.linspace(move_list[-1], distance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]
    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=10)

    page.mouse.move(x=int(slider_box['x']) + 300, y=slider_box['y'] + slider_box['height'] / 2, steps=3)
    page.mouse.up()
    page.wait_for_load_state()

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第15张图片
模块运行成功!

完整代码

import os
import time
import random
import pandas as pd
import numpy as np
from playwright.sync_api import Playwright, sync_playwright


def name_file(name):
    ix = 0
    while True:
        filename = f'{name}_{ix}.xlsx'
        if os.path.exists(filename):
            ix += 1
        else:
            return filename


def get_new_page_info(context, Locator):
    with context.expect_page() as new_page_info:
        Locator.click()
    new_page = new_page_info.value
    new_page.wait_for_load_state()

    if '滑动' in new_page.title():
        sliding_path(new_page)
        new_page.wait_for_load_state()

    position_name = new_page.locator('xpath=/html/body/div[2]/div[2]/div[2]/div/div[1]/h1').text_content()
    job_company = new_page.locator('xpath=/html/body/div[2]/div[2]/div[3]/div[4]/div').text_content()
    job_request = new_page.locator('xpath=/html/body/div[2]/div[2]/div[2]/div/div[1]/p').text_content()
    salary = new_page.locator('xpath=/html/body/div[2]/div[2]/div[2]/div/div[1]/strong').text_content()
    position_label = new_page.locator('xpath=/html/body/div[2]/div[2]/div[2]/div/div[1]/div/div').text_content()
    content = new_page.locator('xpath=/html/body/div[2]/div[2]/div[3]/div[1]/div').text_content()
    new_page.close()
    return [position_name, job_company, job_request, salary, position_label, content]


def sliding_path(page):
    # 定义滑块和包含容器
    slider_box = page.locator('xpath=//*[@id="nc_1_n1z"]').bounding_box()
    contain_box = page.locator('xpath=//*[@id="nc_1__scale_text"]/span').bounding_box()
    distance = contain_box['width']
    page.mouse.move(x=int(slider_box['x']), y=slider_box['y'] + slider_box['height'] / 2)
    page.mouse.down()
    size = 1000
    scale = 3
    tolerance = distance * 0.2

    # 超过
    lst = np.linspace(0, distance + tolerance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]

    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=3)

    size = 100
    scale = 10

    # 返回
    lst = np.linspace(move_list[-1], distance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]
    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=10)

    page.mouse.move(x=int(slider_box['x']) + 300, y=slider_box['y'] + slider_box['height'] / 2, steps=3)
    page.mouse.up()
    page.wait_for_load_state()


def run(playwright: Playwright) -> None:
    browser = playwright.chromium.connect_over_cdp('http://localhost:6568')
    context = browser.contexts[0]
    page = context.pages[0]

    info_list = []
    try:
        for i in range(30):
            Locators = page.locator('xpath=//*[@id="app"]/div/div[2]/div/div/div[2]/div/div[2]/div/div[2]/div[1]/div/div[2]/div/span')
            for Locator in Locators.all():
                info = get_new_page_info(context, Locator)
                time.sleep(0.2)
                print(info)
                info_list.append(info)
            page.locator('xpath=//i[@class="el-icon el-icon-arrow-right"]').click()
            time.sleep(1)
            page.wait_for_load_state()
    except Exception as e:
        print(e)

    df = pd.DataFrame(info_list, columns=['position_name', 'job_company', 'job_request', 'salary', 'position_label', 'content'])
    df.to_excel(name_file('前程'), index=False)


with sync_playwright() as playwright:
    run(playwright)

3.运行代码等待得到提取结果

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第16张图片

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第17张图片


五、猎聘——招聘网站的数据采集

1.用端口浏览器打开网站

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第18张图片

2.分析网站并用代码提取

import os
import time
import random
import pandas as pd
import numpy as np
from playwright.sync_api import Playwright, sync_playwright


def name_file(name):
    ix = 0
    while True:
        filename = f'{name}_{ix}.xlsx'
        if os.path.exists(filename):
            ix += 1
        else:
            return filename


def get_new_page_info(context, Locator):
    with context.expect_page() as new_page_info:
        Locator.click()
    new_page = new_page_info.value
    new_page.wait_for_load_state()
    new_page.set_default_timeout(1000)

    if '滑动' in new_page.title():
        sliding_path(new_page)
        new_page.wait_for_load_state()

    position_name = new_page.locator('xpath=/html/body/section[3]/div[1]/div[1]/span[1]').text_content()
    try:
        job_company = new_page.locator('xpath=/html/body/main/aside/div[3]').text_content()
    except:
        job_company = ''
    job_request = new_page.locator('xpath=/html/body/section[3]/div[1]/div[2]').text_content()
    salary = new_page.locator('xpath=/html/body/section[3]/div[1]/div[1]/span[2]').text_content()
    position_label = new_page.locator('xpath=/html/body/section[4]/div/div[1]').text_content()
    content = new_page.locator('xpath=/html/body/main/content/section[2]').text_content()
    new_page.close()
    return [position_name, job_company, job_request, salary, position_label, content]


def sliding_path(page):
    # 定义滑块和包含容器
    slider_box = page.locator('xpath=//*[@id="nc_1_n1z"]').bounding_box()
    contain_box = page.locator('xpath=//*[@id="nc_1__scale_text"]/span').bounding_box()
    distance = contain_box['width']
    page.mouse.move(x=int(slider_box['x']), y=slider_box['y'] + slider_box['height'] / 2)
    page.mouse.down()
    size = 1000
    scale = 3
    tolerance = distance * 0.2

    # 超过
    lst = np.linspace(0, distance + tolerance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]

    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=3)

    size = 100
    scale = 10

    # 返回
    lst = np.linspace(move_list[-1], distance, size) + np.random.normal(size=size, scale=scale)
    ix = np.array([i ** 2 for i in range(1, int(size ** 0.5 + 1))]) - 1
    move_list = lst[ix]
    for move in move_list:
        page.mouse.move(x=int(slider_box['x']) + move, y=slider_box['y'] + slider_box['height'] / 2, steps=10)

    page.mouse.move(x=int(slider_box['x']) + 300, y=slider_box['y'] + slider_box['height'] / 2, steps=3)
    page.mouse.up()
    page.wait_for_load_state()


def run(playwright: Playwright) -> None:
    browser = playwright.chromium.connect_over_cdp('http://localhost:6568')
    context = browser.contexts[0]
    page = context.pages[0]

    info_list = []
    try:
        for i in range(30):
            Locators = page.locator('xpath=//*[@id="lp-search-job-box"]/div[3]/section[1]/div[1]/div/div/div[1]/div/a/div[1]/div')
            for Locator in Locators.all():
                info = get_new_page_info(context, Locator)
                time.sleep(0.2)
                print(info)
                info_list.append(info)
            page.locator('xpath=//span[@aria-label="right"]').click()
            time.sleep(1)
            page.wait_for_load_state()
    except Exception as e:
        print(e)

    df = pd.DataFrame(info_list, columns=['position_name', 'job_company', 'job_request', 'salary', 'position_label', 'content'])
    df.to_excel(name_file('猎聘'), index=False)

with sync_playwright() as playwright:
    run(playwright)

3.运行代码等待得到提取结果

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第19张图片

基于Playwright自动化测试软件的数据采集(拉钩网,智联招聘,前程无忧,猎聘)爬虫 招聘信息 滑块验证 playwright安装与测试_第20张图片
完成!

你可能感兴趣的:(数据采集,Python爬虫,python,求职招聘,数据分析,网络爬虫)