使用YOLOV5训练自己的数据集

1.准备数据集

使用labelimg将数据集中需要识别的部位框出来

2.划分数据集,训练集

编写代码,自动划分,以及将VOC格式转为YOLO格式


import xml.etree.ElementTree as ET
import os
import random
from shutil import copyfile
import cv2

classes = ["gas", "fire"]

TRAIN_RATIO = 0.8


def clear_hidden_files(path):
    """
    清除文件夹下的隐藏文件
    """
    # 获取path路径下的所有文件
    dir_list = os.listdir(path)
    for i in dir_list:
        # 获取每个文件的绝对路径
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    """
    将数据归一化处理
    """
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(label_id):
    """
    将xml文件转换为yolo格式
    """
    in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % label_id)
    out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % label_id, 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


def vocToTxt():
    """
    将VOC数据转为YOLO数据
    :return:
    """
    # 获取当前工作目录
    wd = os.getcwd()

    data_base_dir = os.path.join(wd, "VOCdevkit/")
    if not os.path.isdir(data_base_dir):
        os.mkdir(data_base_dir)
    work_space_dir = os.path.join(data_base_dir, "VOC2007/")
    if not os.path.isdir(work_space_dir):
        os.mkdir(work_space_dir)
    annotation_dir = os.path.join(work_space_dir, "Annotations/")
    if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
    clear_hidden_files(annotation_dir)
    image_dir = os.path.join(work_space_dir, "JPEGImages/")
    if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
    clear_hidden_files(image_dir)
    yolo_labels_dir = os.path.join(work_space_dir, "YOLOLabels/")
    if not os.path.isdir(yolo_labels_dir):
        os.mkdir(yolo_labels_dir)
    clear_hidden_files(yolo_labels_dir)
    yolov5_images_dir = os.path.join(data_base_dir, "images/")
    if not os.path.isdir(yolov5_images_dir):
        os.mkdir(yolov5_images_dir)
    clear_hidden_files(yolov5_images_dir)
    yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
    if not os.path.isdir(yolov5_labels_dir):
        os.mkdir(yolov5_labels_dir)
    clear_hidden_files(yolov5_labels_dir)
    yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
    if not os.path.isdir(yolov5_images_train_dir):
        os.mkdir(yolov5_images_train_dir)
    clear_hidden_files(yolov5_images_train_dir)
    yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
    if not os.path.isdir(yolov5_images_test_dir):
        os.mkdir(yolov5_images_test_dir)
    clear_hidden_files(yolov5_images_test_dir)
    yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
    if not os.path.isdir(yolov5_labels_train_dir):
        os.mkdir(yolov5_labels_train_dir)
    clear_hidden_files(yolov5_labels_train_dir)
    yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
    if not os.path.isdir(yolov5_labels_test_dir):
        os.mkdir(yolov5_labels_test_dir)
    clear_hidden_files(yolov5_labels_test_dir)

    list_imgs = os.listdir(image_dir)  # list image files
    list_xml = os.listdir(annotation_dir)

    # 将数据集重新排序
    prob = random.sample(range(0, len(list_imgs)), len(list_imgs))
    # 将数据集分为训练集和验证集
    for i in range(0, len(list_imgs)):
        # 获取图片数据集中每个图片的路径
        path = os.path.join(image_dir, list_imgs[i])
        # 获得每个图片文件的路径,带文件名
        image_path = image_dir + list_imgs[i]
        img_name = list_imgs[i]
        # 获得每个xml文件的路径,带文件名
        annotation_path = annotation_dir + list_xml[i]
        # 分离文件名与扩展名  extension:扩展名
        (nameWithoutExtension, extension) = os.path.splitext(os.path.basename(image_path))
        # 使用图片名命名标签文件名,并将文件名后缀改为txt,放入YOLOLabels文件夹中
        label_name = nameWithoutExtension + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)

        print("Pro: %d" % prob[i])
        if prob[i] < (len(list_imgs) * TRAIN_RATIO):  # train dataset
            if os.path.exists(annotation_path):
                convert_annotation(nameWithoutExtension)  # convert label
                copyfile(image_path, yolov5_images_train_dir + img_name)
                copyfile(label_path, yolov5_labels_train_dir + label_name)
        else:  # test dataset
            if os.path.exists(annotation_path):
                convert_annotation(nameWithoutExtension)  # convert label
                copyfile(image_path, yolov5_images_test_dir + img_name)
                copyfile(label_path, yolov5_labels_test_dir + label_name)




3.训练模型

首先根据voc.yaml,制作一个自己数据集的yaml文件,把path改为自己的数据集路径,nc改为自己数据集的类别数,name改为自己的类别名称

使用YOLOV5训练自己的数据集_第1张图片

 修改train.py文件(这里以yolov5s为例,也可以使用其他模型)

weights:default改为yolov5s.pt(如果不想使用预训练权重的话,可以输入none)

cfg:default改为yolov5s.yaml(选择模型文件)

data:data为刚才数据集yaml文件的储存路径

epoch:训练的轮次,自己设置

batch_size:根据自己的内存选择,16, 32, 64都可以,如果报错的话就改小一点

使用YOLOV5训练自己的数据集_第2张图片

 接下来运行train.py文件就可以了

你可能感兴趣的:(deep,learning学习笔记,python,opencv,机器学习,图像处理)