GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标

GPS 定位信息分析(1)

从下面的数据可知,raw data 的提取和经纬度的计算应该是没问题的

在相同的经纬度下, x 和 y 还会发生变化,显然是不正确的

raw data:3150.93331124	11717.59467080	5.3
latitude: 31.8489	longitude: 117.293	heading_angle: 5.3
raw data:3150.93332581	11717.59468186	59.4
latitude: 31.8489	longitude: 117.293	heading_angle: 59.4
x: 0.0270035	y: 0.017412
---------
raw data:3150.93333013	11717.59468264	81.7
latitude: 31.8489	longitude: 117.293	heading_angle: 81.7
x: 0.03501	y: 0.01864
---------
raw data:3150.93333688	11717.59468779	77.2
latitude: 31.8489	longitude: 117.293	heading_angle: 77.2
x: 0.0475202	y: 0.0267478
---------
raw data:3150.93333483	11717.59468236	89.2
latitude: 31.8489	longitude: 117.293	heading_angle: 89.2
x: 0.0437208	y: 0.0181992
---------
raw data:3150.93334090	11717.59465670	337.7
latitude: 31.8489	longitude: 117.293	heading_angle: 337.7
x: 0.0549707	y: 0.022198
---------

调整输出后在 MATLAB 中处理显示

  • clockwise_pro.txt
  • anticlockwise_pro.txt
  • path_pro.txt

clockwise_pro 和 anticlockwise_pro 有助于分析航向角信息,path 参考意义不大

航向角信息分析

clockwise_pro 航向角信息

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第1张图片

anticlockwise_pro 航向角信息

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第2张图片

GPS 获取的是真北航迹方向,deg

Heading定向是指双天线接收机的主天线(ANT1)与从天线(ANT2)之间构成一个基线向量,确定此基线向量逆时针方向与真北的夹角

首先要明确基线向量与正北方向夹角的大小以及正负关系,分析如下,红色表示正北方向,蓝色表示基线向量,绿色表示航向角(真北航迹方向)


正北方向表示 0 度或 360 度位置,非负值,沿正北方向顺时针旋转是角度增加的方向

此时分析 clockwise_pro 和 anticlockwise_pro 的航向角变化结果就比较容易,示意图如下

以顺时针为例,起始位姿航向角 50 度,顺时针旋转至于正北方向重合,角度一直增大至 360 度

重合后继续顺时针旋转,此时会先从 360 度突变至 0 度,再继续增加

问题分析

1、由于手动安装主从天线,基线向量本身存在夹角,导致航向角始终存在偏差

下图能够说明该问题

2、GPS 获得的航向角信息是在大地或者正北天坐标系下的,该信息并不可以使用,需要转换到局部坐标系下,涉及到坐标转换的问题

3、基线向量和主从天线有关,接收机 com1 口对应主天线,但仅靠线缆无法区分,本次也没有贴标签注明哪一根接前天线,哪一根接后天线,下次接线若与本次不同可能会有影响

轨迹信息分析

clockwise_pro 轨迹信息

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第3张图片

anticlockwise_pro 轨迹信息

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第4张图片

对于原地旋转而言经纬度信息保持不变,此时在 X 方向和 Y 方向还有如此大的位移,是有问题的


GPS 定位信息分析(2)

对于局部 XY 坐标信息的异常,从公式和编程两方面考虑

XY 坐标计算

公式部分应该没什么问题,主要由“根据经纬度计算两地之间的距离”推得

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第5张图片

查找资料的过程中还发现“大地坐标系与空间直角坐标系的转换”,可以作为储备知识

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第6张图片

以起始的 GPS 坐标为全局坐标系原点(init_pose),以当前纬度为 X轴,当前经度为 Y 轴

计算目标点 X 坐标时,假设纬度相同,根据经度差计算 X 坐标值

计算目标点 Y 坐标时,假设经度相同,根据纬度差计算 Y 坐标值

陆师兄 gps_path.cpp 中的代码如下,感觉存在一些问题

//初始化
    if(!init)
    {
        init_pose.latitude = gps_msg_ptr->latitude;
        init_pose.longitude = gps_msg_ptr->longitude;
        init_pose.altitude = gps_msg_ptr->altitude;
        init = true;
    }
    else
    {
    //计算相对位置
        double radLat1 ,radLat2, radLong1,radLong2,delta_lat,delta_long;
		radLat1 = rad(init_pose.latitude);
        radLong1 = rad(init_pose.longitude);
		radLat2 = rad(gps_msg_ptr->latitude);
		radLong2 = rad(gps_msg_ptr->longitude);
        //计算x
		delta_lat = radLat2 - radLat1;
        delta_long = 0;
        double x = 2*asin( sqrt( pow( sin( delta_lat/2 ),2) + cos( radLat1 )*cos( radLat2)*pow( sin( delta_long/2 ),2 ) ));
        x = x*EARTH_RADIUS*1000;

        //计算y
		delta_lat = 0;
        delta_long = radLong1  - radLong2;
        double y = 2*asin( sqrt( pow( sin( delta_lat/2 ),2) + cos( radLat2 )*cos( radLat2)*pow( sin( delta_long/2 ),2 ) ) );
        y = y*EARTH_RADIUS*1000;

        //计算z
        double z = gps_msg_ptr->altitude - init_pose.altitude;

        //发布轨迹
        ros_path_.header.frame_id = "path";
        ros_path_.header.stamp = ros::Time::now();  

        geometry_msgs::PoseStamped pose;
        pose.header = ros_path_.header;

        pose.pose.position.x = x;
        pose.pose.position.y = y;
        pose.pose.position.z = z;

        ros_path_.poses.push_back(pose);

        //ROS_INFO("( x:%0.6f ,y:%0.6f ,z:%0.6f)",x ,y ,z );
	cout<<x<<","<<y<<","<<z<<endl;
        state_pub_.publish(ros_path_);
    }
}

简单调整如下,只是将 X 变为 Y,Y 变为 X,影响不大

        		// 计算x
            delta_lat = 0;
            delta_long = radLong1 - radLong2;           
            double x = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat1) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            x = x * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << x << endl;

            // 计算y
            delta_lat = radLat2 - radLat1;
            delta_long = 0;
            double y = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat2) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            y = y * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\ty: " << y << endl;

XY 坐标误差

另外对于原地旋转经纬度不变情况下存在较大 XY 方向位移的问题,打印过程中各变量分析

      			// 计算相对位置
            double radLat1, radLat2, radLong1, radLong2, delta_lat, delta_long;
            radLat1 = rad(init_pose.latitude);
            radLong1 = rad(init_pose.longitude);
            radLat2 = rad(latitude);
            radLong2 = rad(longitude);
            cout << "radLat1: " << radLat1 << "\tradLong1: " << radLong1 << "\tradLat2: " << radLat2 << "\tradLong2: " << radLong2 << endl;
            // 计算x
            delta_lat = radLat2 - radLat1;
            delta_long = 0;
            double x = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat1) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            x = x * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << x << endl;

            // 计算y
            delta_lat = 0;
            delta_long = radLong1 - radLong2;
            double y = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat2) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            y = y * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << y << endl;

            cout << "---------" << endl;
latitude: 31.8489	longitude: 117.293	heading_angle: 5.3
latitude: 31.8489	longitude: 117.293	heading_angle: 59.4
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 4.23824e-09	delta_long: 0	x: 0.0270035
delta_lat: 0	delta_long: -3.21722e-09	x: 0.017412
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 81.7
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 5.49488e-09	delta_long: 0	x: 0.03501
delta_lat: 0	delta_long: -3.44412e-09	x: 0.01864
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 77.2
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 7.45837e-09	delta_long: 0	x: 0.0475202
delta_lat: 0	delta_long: -4.94219e-09	x: 0.0267478
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 89.2
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 6.86205e-09	delta_long: 0	x: 0.0437208
delta_lat: 0	delta_long: -3.36267e-09	x: 0.0181992
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 337.7
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 8.62774e-09	delta_long: 0	x: 0.0549707
delta_lat: 0	delta_long: 4.10152e-09	x: 0.022198
---------

发现 radLat1 和 radLat2 相等,但是 delta_lat 却一直在变化,经度同理,这是 XY 坐标变化的主因

这里涉及到计算机中小数的表示,浮点数无法被精确表示,虽然 radLat1 和 radLat2 前几位都是 0.555868,但最后的尾部无法始终相同,因此相减后始终存在极小的误差,e-09 级别

round() 函数可以用于保留小数,详见 2022-07-30 C++:round函数用法

在进行角度和弧度转换时限定浮点数精度,调整 cout 输出精度后输出如下

// 角度制转弧度制
double deg2rad(double deg)
{
    double rad = deg * M_PI / 180.0;
    // 保留有限小数
    rad = round(rad * 1000000000) / 1000000000;
    return rad;
}

		cout.setf(ios::fixed);
    cout.precision(9);
/home/redwall/catkin_ws/src/gps_sensor/log/2023-11-10/clockwise.txt
latitude: 31.848888521	longitude: 117.293244513	heading_angle: 5.300000000
latitude: 31.848888763	longitude: 117.293244698	heading_angle: 59.400000000
delta_lat: 0.000000000	delta_long: -0.000000003	x: 0.016236402
delta_lat: 0.000000004	delta_long: 0.000000000	y: 0.025485572
---------
latitude: 31.848888835	longitude: 117.293244711	heading_angle: 81.700000000
delta_lat: 0.000000000	delta_long: -0.000000004	x: 0.021648536
delta_lat: 0.000000005	delta_long: 0.000000000	y: 0.031856965
---------
latitude: 31.848888948	longitude: 117.293244797	heading_angle: 77.200000000
delta_lat: 0.000000000	delta_long: -0.000000005	x: 0.027060668
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848888914	longitude: 117.293244706	heading_angle: 89.200000000
delta_lat: 0.000000000	delta_long: -0.000000003	x: 0.016236402
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848889015	longitude: 117.293244278	heading_angle: 337.700000000
delta_lat: 0.000000000	delta_long: 0.000000004	x: 0.021648534
delta_lat: 0.000000008	delta_long: 0.000000000	y: 0.050971144
---------
latitude: 31.848888630	longitude: 117.293243995	heading_angle: 331.400000000
delta_lat: 0.000000000	delta_long: 0.000000009	x: 0.048709202
delta_lat: 0.000000002	delta_long: 0.000000000	y: 0.012742786
---------
latitude: 31.848888411	longitude: 117.293243583	heading_angle: 238.000000000
delta_lat: 0.000000000	delta_long: 0.000000016	x: 0.086594137
delta_lat: -0.000000002	delta_long: 0.000000000	y: 0.012742786
---------
latitude: 31.848888926	longitude: 117.293243262	heading_angle: 269.000000000
delta_lat: 0.000000000	delta_long: 0.000000022	x: 0.119066939
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848889280	longitude: 117.293242747	heading_angle: 265.900000000
delta_lat: 0.000000000	delta_long: 0.000000031	x: 0.167776140
delta_lat: 0.000000013	delta_long: 0.000000000	y: 0.082828109
---------

观察确实主要在 latitude 和 longtitude 的 6 ~ 9 位小数会发生变化,导致 XY 坐标的变化

保留有限的小数可以一定程度上限制数据的抖动,但也会使得 path.txt 无法输出轨迹,比较矛盾

/home/redwall/catkin_ws/src/gps_sensor/log/2023-11-10/path.txt
latitude: 31.848883337	longitude: 117.293247277	heading_angle: 35.900000000
latitude: 31.848883241	longitude: 117.293247357	heading_angle: 49.400000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883139	longitude: 117.293247392	heading_angle: 198.800000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883027	longitude: 117.293247506	heading_angle: 37.300000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883101	longitude: 117.293247264	heading_angle: 359.300000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848882789	longitude: 117.293247238	heading_angle: 175.200000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000

问题分析

考虑 GPS 本身的定位精度,以及移动距离过短两方面引起误差的产生

差分定位(Differential GPS,DGPS)是一种通过引入参考站观测数据来提高全球定位系统(GPS)接收机测量精度的技术。通常,差分GPS可以提供亚米级的位置精度,甚至更高,相比于普通的独立GPS。

差分GPS系统的基本原理是,参考站与GPS接收机接收相同的卫星信号,然后比较它们的观测值与已知的准确位置。由于参考站的位置已知,它可以检测到GPS信号由于大气层、电离层等环境因素引起的误差,并将这些误差信息传输给用户设备,从而实现位置精度的提高。

DGPS的精度取决于多个因素,包括:

  1. 基站位置的准确性: 基站的准确位置对差分定位的精度至关重要。
  2. 基站到用户接收机的距离: 基站越接近用户设备,传输的差分校正信息的精度就越高。
  3. 使用的卫星数量和分布: 使用更多的卫星可以提高定位的准确性。
  4. 大气层和电离层的变化: 大气层和电离层的变化会引起GPS信号的传播延迟,这可能影响定位的精度。

总体而言,在适当的条件下,差分GPS可以提供比普通独立GPS更高的位置精度,通常在亚米级别。然而,实际精度可能会受到环境、设备和使用条件的影响。

其实关于 GPS 数据在 Rviz 中显示,2020 年已经有相关技术博客

ROS:GPS坐标序列可视化(在Rviz中显示轨迹)

GPS坐标转换并实时显示轨迹

ROS入门:GPS坐标转换&Rviz显示轨迹

将GPS轨迹,从经纬度WGS-84坐标转换到真实世界xyz坐标系(东北天ENU)下(思路:计算出每个gps坐标相对与第一个坐标的距离(m为单位),比较相邻两点的经纬度变化,赋予位移的方向,然后累加得到轨迹)

陆辉东的代码和博客中几乎一样,应该也是学习借鉴了

对于精度的问题可以参考下面的博客解决

小场景下基于ROS的GPS经纬高度值转换为平面XYZ坐标值,并用RVIZ显示轨迹

GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第7张图片
GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标_第8张图片

另外还可以将 GPS 数据在卫星地图中显示,获得比较酷炫的效果


ROS下如何将GPS数据在卫星地图显示(两种开源方法)

ROS采集GPS/北斗数据在百度地图中可视化位置

SLAM中将地图映射到谷歌地图上的方法——完美运行

你可能感兴趣的:(传感器,机器人)