- 迷茫
lily和sunflower
我是90年老阿姨一枚,山东人,目前在天津一家社区医院工作。个人秘密不曾在单位公开,导致好心的同事给我介绍对象被拒绝而被认为是我挑剔。所以,现在也没人给我介绍了。。。。在这里,大概没有熟人吧。我在6年前也就是大二的时候做过乳腺癌切除手术,切除一侧乳房。还未出院初恋便提出分手,说将来无法面对我胸前的伤疤。身体和精神的打击使我倍感痛苦,在亲人同学及老师的帮助下,我慢慢走了出来。化疗期间,一个人挤公交,每
- 学习随笔12.28
木昜丹徒
12月28日‖腊月初三,周六,阴转小雨。今天的天气真是太糟糕了,阴了一整天,外面好冷,在家待了一天,学了掉东西。今天认识了三个病症及其治疗方法。一、富贵包:所谓的富贵包,指的是在后背上部颈胸交界处,也就是第七颈椎和第一胸椎有凸出的硬包块。有的时候富贵包里面是一些软组织或肌肉增生导致的,这时可以通过扎针解决,还有一些是骨性问题导致的,例如,脊柱侧弯,脊柱的畸形或脊柱的曲度异常,如果按下去能按动的是没
- 《此生未完成》:除了生死,其他都是小事
绿茵下
于娟,一名海归女博士,她知识渊博、学贯中西。当她准备用自己的满腹学识报效祖国,为家庭出力的时候,被查出乳腺癌晚期。在她生命的最后时光,她写下了十多万字的“生死日记”——《此生未完成》。这本《此生未完成》是于娟留给忙忙碌碌的世人的“遗产”。这份“遗产”沉重而珍贵,她告诉我们,除了生死,其他都是小事。01生命的遗憾于娟在发现自己得了乳腺癌的时候,已经是晚期了。化疗带给他的不仅是身体的痛苦,更多的是来自
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 对生命说是1226
鲁伟竹原爱
如何体验所谓不想要的情绪一一生气关于生气,让我回忆起十几年的事,很好的友人吧。曾经有人让我生气,让我怒不可遏的事,年轻气盛的我真想找他们取回公道,那时让我抑郁一段时间。后来她的气性太大,得了乳腺癌,我又很是同情她,我们之间的所有恩怨全部消化掉了,她的病让我一点不吃惊,因她的所做所为造成的。后期在医院陪她几天,发现她对我之前态度还是很愧疚,这段时间拉近我们的关系,发现原谅一个人,心情很是释然愉悦的!
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 5.31.15 使用图像到图像转换和 YOLO 技术对先前的乳房 X 光检查结果中的异常进行早期检测和分类
托比-马奎尔
深度学习基础知识YOLO
在本研究中,我们研究了基于You-Only-Look-Once(YOLO)架构的端到端融合模型的有效性,该模型可同时检测和分类数字乳房X光检查中的可疑乳腺病变。包括四类病例:肿块、钙化、结构扭曲和正常,这些病例来自包含413个病例的私人数字乳房X光检查数据库。对于所有病例,先前的乳房X光检查(通常是1年前扫描的)均报告为正常,而当前的乳房X光检查被诊断为癌变(经活检证实)或健康。方法:建议将基于Y
- 基于迁移学习的多视图卷积神经网络在乳腺超声自动分类中的应用
despacito,
论文精读-乳腺超声分类
BREASTCANCERCLASSIFICATIONINAUTOMATEDBREASTULTRASOUNDUSINGMULTIVIEWCONVOLUTIONALNEURALNETWORKWITHTRANSFERLEARNINGYIWANG,*,1EUNJUNGCHOI,y,1YOUNHEECHOI,*HAOZHANG,*GONGYONGJIN,yandSEOK-BUMKO*TAGGEDEND*De
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- 肿瘤靶向治疗中NCCN指南与临床试验入组标准的自动匹配系统(匹配精度98.7%)
百态老人
人工智能
一、核心概念解析NCCN指南的权威性与结构定位:NCCN指南是全球肿瘤诊疗的“金标准”,覆盖97%的美国癌症患者管理决策,基于证据等级(1/2A/2B/3类)和专家共识制定,每年至少更新一次。核心内容:按癌种分类(如非小细胞肺癌、乳腺癌)的靶向治疗路径,明确生物标志物检测要求(如EGFR、ALK突变)。治疗推荐分级:Category1(高级别证据)和2A(专家共识)推荐纳入NCCN纲要,直接影响医
- Turkey HSD检验法/W法
weixin_30746117
pythonr语言matlab
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share医药统计项目联系QQ:231469242python2.7#-*-cod
- 文献速递:深度学习乳腺癌诊断---使用深度学习改善乳腺癌诊断的MRI技术
有Li
深度学习人工智能
Title题目ImprovingbreastcancerdiagnosticswithdeeplearningforMRI使用深度学习改善乳腺癌诊断的MRI技术01文献速递介绍乳腺磁共振成像(MRI)是一种高度敏感的检测乳腺癌的方式,报道的敏感性超过80%。传统上,其在筛查中的使用被限制在高风险患者身上。新的证据支持在中等风险和普通风险女性中进行筛查MRI的作用4)。诊断MRI对于额外的指示也很有
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- 文献解读-病理影像多模态模型预测乳腺癌新辅助化疗的病理完全反应
今天也不想动
文献解读病理组学影像组学文献解读多模态病理影像组学
期刊:ScienceAdvances影响因子:11.7,中科院1区Top发表时间:2025年4月30日概要:首都医科大学宣武医院放射科卢洁教授团队近日(2025年5月)在中科院1区top期刊《SciAdv》(IF=11.7)上发表研究“Amultimodalandfullyautomatedsystemforpredictionofpathologicalcompleteresponsetoneo
- 【R语言编程绘图-mlbench】
南瓜胖胖
r语言开发语言机器学习
mlbench库简介mlbench是一个用于机器学习的R语言扩展包,主要用于提供经典的基准数据集和工具,常用于算法测试、教学演示或研究场景。该库包含多个知名数据集,涵盖分类、回归、聚类等任务。包含的主要数据集BostonHousing波士顿房价数据集,包含506条记录和14个特征,用于回归任务。目标变量为房屋中位数价格。BreastCancer威斯康星州乳腺癌数据集(原始版),包含699个样本和1
- Wnt/β-catenin 信号通路
绵羊2023
信号通路linux
Wnt基因最初来源于小鼠乳腺癌中的整合酶-1和果蝇的无翼基因。由于这两个基因和功能蛋白相似,研究人员将这些术语组合为Wnt基因。Wnt信号通路包括非经典和经典通路。非经典Wnt通路独立于β-catenin-T细胞因子/淋巴增强子结合因子(TCF/LEF),例如Wnt/Ca2+通路和非经典Wnt平面细胞极性。经典Wnt通路,也称为Wnt/β-catenin通路,涉及β-catenin的核转位和通过T
- 【Educoder】— 机器学习(PCA第三关)
鹿毅十川
机器学习sklearn人工智能
目录任务描述相关知识数据介绍PCA编程要求代码第三关—sklearn中的PCA任务描述本关任务:你需要调用sklearn中的PCA接口来对数据继续进行降维,并使用sklearn中提供的分类器接口(可任意挑选分类器)对癌细胞数据进行分类。相关知识为了完成本关任务,你需要掌握sklearn中的PCA类。数据介绍乳腺癌数据集,其实例数量是569,实例中包括诊断类和属性,帮助预测的属性一共30个,各属性包
- 兰亭妙微设计:为生命科技赋予人性化的交互语言
bao_lanlan
科技
在医疗科技日新月异的今天,卓越的硬件性能唯有匹配恰如其分的交互语言,方能真正发挥价值。作为专注于医疗UI/UX设计的专业团队,兰亭妙微设计(www.lanlanwork.com)始终相信:每一处像素的排布,都应承载临床洞察的温度;每一次触控的响应,都需回应生命托付的分量。让复杂医疗设备「会说话」在德迈特真空辅助乳腺活检系统的研发过程中,工程团队面临一项核心挑战:如何在一块8英寸触控屏上,实现超声影
- 数据分析与可视化实战:从鸢尾花到乳腺癌数据集
loopdeloop
数据分析数据挖掘
数据分析是现代数据科学中不可或缺的一部分,它帮助我们理解数据、发现模式并做出明智的决策。本文将分享两个实战案例:鸢尾花数据集分析和乳腺癌数据集预处理,展示如何使用Python进行数据探索和可视化。鸢尾花数据集分析数据加载与基本统计我们首先从UCI机器学习库加载著名的鸢尾花数据集:data=pd.read_csv('http://archive.ics.uci.edu/ml/machine-lear
- 【图像分割】k-means、模糊c-means 和优化k-means聚类的乳腺肿瘤分割【含Matlab源码 8986期】
Matlab领域
Matlab图像处理(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab图像处理仿真内容点击①Matlab图像处理(高阶版)②付费专栏Matlab图像处理(进阶版)③付费专栏Matlab图像处理(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- dicom基础:乳腺影像方位信息介绍
猿享天开
DICOM医学影像专业知识精讲图像处理DICOMDICOM医学影像
目录一、轴位(CC,Craniocaudal)二、侧位(Lateral)三、侧斜位(MLO,MediolateralOblique)四、不同的拍摄方位的乳腺影像展示1、RCC(RightCraniocaudal)2、LCC(LeftCraniocaudal)3、RMLO(RightMediolateralOblique)4、LMLO(LeftMediolateralOblique)5、临床意义五、
- pythonsklearn乳腺癌数据集_【sklearn数据集】SVM之乳腺癌数据集实战
weixin_39567169
一、Sklearn介绍scikit-learn是Python语言开发的机器学习库,一般简称为sklearn,目前算是通用机器学习算法库中实现得比较完善的库了。其完善之处不仅在于实现的算法多,还包括大量详尽的文档和示例。其文档写得通俗易懂,完全可以当成机器学习的教程来学习。二、Sklearn数据集种类sklearn的数据集有好多个种自带的小数据集(packageddataset):sklearn.d
- 序列器与预配号
南天神杵孟猛
数据库
在开立账户时,**使用序列器**和**预配号**是两种不同的方式,用于生成账户的唯一标识符。以下是它们的含义和区别:####序列器**序列器**是数据库中的一种对象,用于自动生成唯一、连续的数值序列。在开立账户时,使用序列器的主要特点如下:-**自动生成唯一值**-序列器会自动递增生成数字,确保每个账户获得唯一的标识符,避免手动分配可能出现的重复问题。-**高效性能**-序列器的值生成基于数据库引
- 医图论文 MIA 2025 | 基于多视图深度学习技术的乳腺钼靶图像分类:探究基于图和Transformer的架构
小白学视觉
医学图像处理论文解读深度学习分类transformer医学图像顶刊医学图像处理MIA
论文信息题目:Mammographyclassificationwithmulti-viewdeeplearningtechniques:Investigatinggraphandtransformer-basedarchitectures基于多视图深度学习技术的乳腺钼靶图像分类:探究基于图和Transformer的架构作者:FrancescoManigrasso,RosarioMilazzo,A
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- Python使用SVC算法解决乳腺癌数据集分类问题——寻找最佳核函数
啥都鼓捣的小yao
经典算法练习机器学习算法python分类
Python使用SVC算法解决乳腺癌数据集分类问题——寻找最佳核函数最佳内核模板解决思路代码最佳内核您的任务是选择最佳内核,使用SVC算法解决乳腺癌数据集的分类问题。填写下面的代码模板并选择最佳内核,保持其他超参数不变。其他超参数的值:C=1.0degree(多项式核)=2gamma=‘auto’random_state=42要尝试的内核:线性、多项式、径向、S形。作为答案,请提供最佳内核的字符串
- 《今日AI-人工智能-编程日报》-源自2025年3月19日
小亦编辑部
每日AI-人工智能-编程日报人工智能
1.豆包AI编程功能迎来三项重磅升级豆包平台今日宣布其AI编程功能迎来三项重要升级,包括:HTML实时预览:支持用户在编写HTML代码时实时查看网页效果,显著提升前端开发效率,尤其适用于小游戏和网页制作。Python代码直接运行与一键修复:用户可直接运行Python代码,并在出错时一键修复,极大降低了编程门槛,提升了开发效率。生成完整项目:新增生成完整项目的功能,帮助用户快速创建应用程序,缩短开发
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- AbMole| 纳米药物递送系统IL@H-PP在乳腺癌和脑转移光热疗法
AbMole
AbMole生物化学生物试剂科研生物实验
近年来,光热疗法(PTT)作为一种非侵入性的癌症治疗手段,因其独特的优势而受到广泛关注。来自四川大学华西药学院药物靶向与药物递送系统重点实验室的范童,胡海丽,徐燕燕等多名研究人员发表了题为《HollowcoppersulfidenanoparticlescarryingISRIBforthesensitizedphotothermaltherapyofbreastcancerandbrainmet
- 深度学习-【完整代码+数据集】逻辑回归预测乳腺癌检测案例
编程千纸鹤
人工智能学习专栏深度学习逻辑回归人工智能癌症预测
作者主页:编程千纸鹤作者简介:Java、前端、Python开发多年,做过高程,项目经理,架构师主要内容:Java项目开发、Python项目开发、大学数据和AI项目开发、单片机项目设计、面试技术整理、最新技术分享收藏点赞不迷路关注作者有好处文末获得源码机器学习分为:有监督学习:数据带有标签无监督学习:数据没有标签,根据属性聚类在机器学习有监督学习中大致可以分为两大任务,一种是回归任务,一种是分类任务
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin