654 · Sparse Matrix Multiplication
Algorithms
Description
Given two Sparse Matrix A and B, return the result of AB.
You may assume that A’s column number is equal to B’s row number.
Example
Example1
Input:
[[1,0,0],[-1,0,3]]
[[7,0,0],[0,0,0],[0,0,1]]
Output:
[[7,0,0],[-7,0,3]]
Explanation:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
Example2
Input:
[[1,0],[0,1]]
[[0,1],[1,0]]
Output:
[[0,1],[1,0]]
解法1:常规解法。没用到稀疏矩阵的优势。
class Solution {
public:
/**
* @param a: a sparse matrix
* @param b: a sparse matrix
* @return: the result of A * B
*/
vector<vector<int>> multiply(vector<vector<int>> &a, vector<vector<int>> &b) {
int m = a.size();
int n = b.size();
if (m == 0 || n == 0) return vector<vector<int>>();
int p = b[0].size();
vector<vector<int>> res(m, vector<int>(p, 0));
for (int i = 0; i < m; i++) {
for (int k = 0; k < p; k++) {
int sum = 0;
for (int j = 0; j < n; j++) {
sum += a[i][j] * b[j][k];
}
res[i][k] = sum;
}
}
return res;
}
};
解法2: 利用了稀疏矩阵的部分优势,也就是当a[i][j] == 0时,省掉k循环。
class Solution {
public:
/**
* @param a: a sparse matrix
* @param b: a sparse matrix
* @return: the result of A * B
*/
vector<vector<int>> multiply(vector<vector<int>> &a, vector<vector<int>> &b) {
int m = a.size();
int n = b.size();
if (m == 0 || n == 0) return vector<vector<int>>();
int p = b[0].size();
vector<vector<int>> res(m, vector<int>(p, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (a[i][j] == 0) continue;
for (int k = 0; k < p; k++) {
res[i][k] += a[i][j] * b[j][k];
}
}
}
return res;
}
};