- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- CV:图像的直方图均衡化
壹十壹
CVopencv计算机视觉人工智能
均衡化在图像处理中通常指的是直方图均衡化(HistogramEqualization),其主要目的是改善图像的对比度,使图像细节更加明显。以下是对直方图均衡化的详细说明:直方图均衡化原理直方图图像的直方图表示各灰度级在图像中出现的频率。对于对比度较低的图像,直方图可能集中在灰度范围的某一小区间。均衡化目标直方图均衡化通过将原图的灰度分布重新映射,使得输出图像的直方图尽量均匀分布在整个灰度范围内。这
- 图像处理篇---opencv中的图像特征
Ronin-Lotus
图像处理篇深度学习篇图像处理opencv人工智能python
文章目录前言一、纹理特征:局部二值模式(LBP)1.LBP简介2.LBP计算步骤3.OpenCV实现4.优点5.缺点二、形状特征:Hu矩1.Hu矩简介2.Hu矩计算步骤3.OpenCV实现4.优点5.缺点三、其他可用于传统机器学习的特征1.颜色特征颜色直方图颜色矩2.边缘特征Canny边缘检测HOG(方向梯度直方图)3.关键点特征SIFTSURF4.纹理特征Haralick纹理特征5.几何特征轮廓
- 80| Python可视化篇 —— Matplotlib数据可视化
小刘要努力。
Python教程系列专栏可视化数据分析python
文章目录Matplotlib和数据可视化安装matplotlib绘制折线图绘制散点图绘制正弦曲线绘制直方图使用Pygal绘制矢量图3D图Matplotlib和数据可视化数据的处理、分析和可视化已经成为Python近年来最为重要的应用领域之一,其中数据的可视化指的是将数据呈现为漂亮的统计图表,然后进一步发现数据中包含的规律以及隐藏的信息。数据可视化又跟数据挖掘和大数据分析紧密相关,而这些领域以及当下
- 洛谷————B2096 直方图
2401_86810542
算法c++数据结构数组
B2096直方图题目描述给定一个非负整数数组,统计里面每一个数的出现次数。我们只统计到数组里最大的数。假设Fmax(Fmax≤100000)是数组里最大的数,那么我们只统计{0,1,2…Fmax}里每个数出现的次数。输入格式第一行n是数组的大小。1≤n≤100000。紧接着一行是数组的n个元素。输出格式按顺序输出每个数的出现次数,一行一个数。如果没有出现过,则输出0。对于例子中的数组,最大的数是3
- 梯度下降法(Gradient Descent) -- 现代机器学习的血液
AOIWB
机器学习人工智能python
梯度下降法(GradientDescent)–现代机器学习的血液梯度下降法是现代机器学习最核心的优化引擎。本文从数学原理、算法变种、应用场景到实践技巧,用三维可视化案例和代码实现揭示其内在逻辑,为你构建完整的认知体系。优化算法一、梯度下降法的定义与核心原理定义:梯度下降法是一种通过迭代更新参数来最小化目标函数的优化算法,其核心思想是沿着当前点的负梯度方向逐步逼近函数最小值。数学表达:参数更新公式为
- ElasticSearch基础入门(四)桶、度量
全端工程师
elasticsearchelasticsearch
ElasticSearch基础入门(四)聚合一、基本概念1.桶(bucket)2.度量(metrics)二、聚合为桶三、桶内度量四、桶的嵌套五、直方图分桶(阶梯)六、范围分桶(range)一、基本概念通过聚合,我们会得到一个数据的概览。我们需要的是分析和总结全套的数据而不是寻找单个文档。ElasticSearch中的聚合,常见的有两种,桶和度量。1.桶(bucket)桶,是按照一定的方式对数据进行
- python数据分析基础002 -使用matplotlib绘图(散点图,条形图,直方图)
2401_84139192
程序员python数据分析matplotlib
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- MSE损失函数
亲持红叶
numpy线性代数机器学习
MSE损失函数均方误差损失函数表达式KaTeXparseerror:Unexpectedcharacter:'?'atposition39:…imits_{k=1}^K(?̲?_−_)^2…上式中的12\frac{1}{2}21项用于简化计算,也可以利用1k\frac{1}{k}k1进行平均,这些缩放运算均不会改变梯度方向。偏导数$$\begin{aligned}\frac{\partialL}{
- 腿足机器人之五- 粒子滤波
shichaog
腿足机器人机器人
腿足机器人之五粒子滤波直方图滤波粒子滤波上一篇博客使用的是高斯分布结合贝叶斯准则来估计机器人状态,本篇是基于直方图和粒子滤波器这两种无参滤波器估计机器人状态。直方图方法将状态空间分解成有限多个区域,并用直方图表示后验概率。直方图为每个区域分配一个单独的累积概率;可以将其视为对连续密度函数的逐段常数近似。第二种技术通过有限多个样本来表示后验概率。由此产生的滤波器被称为粒子滤波器,在某些机器人问题中获
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 【GreatSQL优化器-13】直方图
数据库mysql
【GreatSQL优化器-13】直方图一、直方图介绍GreatSQL的优化器负责将SQL查询转换为尽可能高效的执行计划,但因为数据环境不断变化有可能导致优化器对查询数据了解不够充足,可能无法生成最优的执行计划进而影响查询效率,因此推出了直方图(histogram)功能来解决该问题。直方图用于统计字段值的分布情况,向优化器提供统计信息。利用直方图,可以对一张表的一列数据做分布统计,估算WHERE条件
- 【协同任务】VFH算法多无人机协同控制技术【含Matlab源码 1999期】
Matlab领域
matlab
⛄一、VFH*算法简介在机器人的每个位置,建立相应的向量场直方图,得到若干个初始候选方向,VFH将沿每个候选方向前进的后果考虑进去。对每个候选方向,首先估算出机器人沿该方向前进一段距离ds后的新位置,然后以该位置为中心,再建立新的向量场,对新的向量场继续分析得到若干候选方向,如此继续下去,重复ng次,就建立了一个深度为ng的搜索树。最后使用A算法,找出一条路径,使根结点到某一个叶子结点的代价最低,
- Python Matplotlib:基本图表绘制指南
chusheng1840
Python教程pythonmatplotlib信息可视化
PythonMatplotlib:基本图表绘制指南Matplotlib是Python中一个非常流行的绘图库,它以简单易用和功能丰富而闻名,适合各种场景的数据可视化需求。在数据分析和数据科学领域,Matplotlib是我们展示数据的有力工具。本文将详细讲解如何使用Matplotlib绘制常见图表,包括折线图、散点图、柱状图、饼图和直方图等。1.Matplotlib简介和安装Matplotlib是一个
- 【Elasticsearch】分桶聚合功能概述
risc123456
Elasticsearchelasticsearch
这些聚合功能可以根据它们的作用和应用场景分为几大类,以下是分类后的结果:1.基础聚合(BasicAggregations)•Terms(字段聚合)根据字段值对数据进行分组并统计。例子:按产品类别统计销售数量。•Histogram(直方图)将数值数据分桶并统计每个桶内的数据数量。例子:按年龄区间统计用户数量。•Datehistogram(日期直方图)按固定时间间隔对日期数据进行分桶并统计。例子:按月
- python 图像特征提取_python实现LBP方法提取图像纹理特征实现分类的步骤
weixin_39969060
python图像特征提取
题目描述这篇博文是数字图像处理的大作业.题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类.图片如下图所示:分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然
- Python 图像处理进阶:特征提取与图像分类
极客代码
玩转Python玩转AI开发语言python图像处理人工智能
特征提取特征提取是计算机视觉中的一个重要环节,它可以从图像中提取出有助于后续处理的特征,比如用于识别和分类的关键点、纹理等。常见的特征提取方法包括SIFT、SURF和ORB等。SIFT(尺度不变特征变换)SIFT是一种用于检测图像中的关键点及其描述符的方法。SIFT特征具有尺度不变性和旋转不变性,适用于图像匹配和识别。原理:SIFT通过在不同尺度的空间内寻找极值点来检测关键点,并利用梯度方向的直方
- python 阴暗图像 亮度增强 对比度增强 去雾
weixin_37763484
python数据挖掘深度学习pythonopencv计算机视觉图像处理目标检测
背景说明最近在处理图像,发现一些样本由于逆光原因过于阴暗,影响图像识别。解决时,可以在训练样本中加入类似的图像,或者手动把相关图像进行颜色变化。这里主要介绍手工颜色变化。原始图像如下,假设你需要判断裤子的种类(牛仔裤还或棉布裤子),类似阴暗图像很难判断:网上现有的解决方法中,主要包含直方图变化和gamma变换,例如下面几篇文章OpenCV调整图像对比度和亮度、qunshansj/opencv-py
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- 国科大-算法中的最优化方法-林
手板心里煎鱼吃
算法性能优化matlab
2024国科大-算法中的最优化方法-林刚考完,把复习资料也发出来,学弟学妹可以参考学习一下。总的来说不是很难,由于开卷转闭卷的原因,大部分都是原题,在ppt以及网上都能找到。考过内容汇总:A前面是几个填空题,主要考察凸函数,拟凸函数,单峰函数这些的图像判断,以及通过等高线图找到梯度方向(第一个ppt上的最后一页的那个图)。填空题主要就是考察这些基本概念。第二大题给了4个题目,让判断是属于哪种规划(
- 基于OpenCV的道路损伤识别
Srlua小谢
传知代码论文复现python图形图像
✨✨欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。我是Srlua小谢,在这里我会分享我的知识和经验。希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。记得先点赞后阅读哦~所属专栏:传知代码论文复现欢迎访问我的主页:Srlua小谢获取更多信息和资源。✨✨目录一、背景介绍二、算法原理(一)中值滤波(二)直方图均衡化(三)调节阈值(
- PCL 计算点云的VFH特征
点云侠'
点云学习c++visualstudio开发语言算法3d
目录一、概述二、代码三、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,可放心复制粘贴。一、概述 VFH(ViewpointFeatureHistogram)特征是一种三维点云描述子,它结合了点云的局部几何信息和视点信息,以提高物体识别和分类的精度。VFH特征通过计算每个点云的法向量分布,生成一个308维的特征直方图,用于表示该点云的形状特征。
- Python的Matplotlib库详解
pumpkin84514
python相关pythonmatplotlib开发语言
Python的Matplotlib库详解Matplotlib是Python中功能强大的数据可视化库,广泛应用于科研、数据分析、报告生成等领域。它能创建各种类型的图表,帮助用户直观地展示数据。一、使用场景1.数据探索和分析:在数据科学领域,Matplotlib经常被用来绘制各种图表,如折线图、散点图、直方图等,以帮助分析和理解数据。2.报告生成:科研人员和数据分析师常用Matplotlib生成图表,
- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- python编写直方图和饼图
2301_80421078
python开发语言
1.直方图#直方图的绘制#语法格式:plt.hist(x,bins),其中x:数据集;bins:统计数据的分布区间importmatplotlib.pyplotaspltimportpandasaspd#导入文件excel=pd.read_excel('成绩.xlsx')#print(excel)#避免乱码plt.rcParams['font.sans-serif']=['SimHei']x=ex
- python图像匹配_opencvpython中的图像匹配
weixin_39585675
python图像匹配
我一直在做一个项目,用opencvpython识别相机中显示的标志。我已经尝试过使用surf、颜色直方图匹配和模板匹配。但在这3个问题中,它并不总是返回正确的答案。我现在想要的是,解决我这个问题的最好办法是什么。模板图像示例:以下是摄像头中显示的标志示例。如果这是我想要识别的图像,该怎么用?在更新matchTemplate中的代码flags=["Cambodia.jpg","Laos.jpg","
- 直方图匹配(Histogram Matching)
姜太公钓鲸233
计算机视觉人工智能机器学习
直方图匹配(HistogramMatching),也被称为直方图规定化(HistogramSpecification)或直方图修正(HistogramEqualization),是一种图像处理技术,用于调整图像的直方图,以使其与某个目标直方图相匹配。目标直方图通常是用户定义的或者是希望获得的期望分布。直方图匹配的目标是改变图像的像素值分布,从而使其在视觉上更接近目标直方图。这对于图像增强、风格迁移
- MATLAB数据建模Week10
WinterCruel
matlab算法人工智能
MATLAB数据建模Week10拿走不谢1、某校60名学生的一次考试成绩如下:937583939185848277767795948991888683968179977875676968848381756685709484838280787473767086769089716686738094797877635355(1)计算均值、标准差、极差、偏度、峰度,画出直方图;(2)检验分布的正态性;(3
- python常用库学习-Matplotlib使用
问道飞鱼
Python相关内容python学习matplotlib
文章目录安装Matplotlib导入库基本示例1.绘制简单的线图2.散点图3.柱状图4.直方图5.子图更多高级功能1.自定义样式2.文本和注释3.保存图形示例:使用Matplotlib绘制多个图表示例1:绘制多个线图示例2:绘制散点图和直方图参考文献Matplotlib是Python中一个非常流行的绘图库,它提供了大量的图形绘制功能,可以创建各种静态、动态和交互式的图表。下面是一些使用Matplo
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交