VARMA(p,q)结合了VAR和VMA模型,其中p是向量自回归(VAR)模型的滞后期数,q是VMA模型的移动平均的阶数。
VARMA是ARMA的推广,它将ARMA模型扩展到多个时间序列变量的情况,通过VAR和VMA的线性组合来描述多个时间序列变量之间的联合变化,适合描述多个时间序列变量之间的关系。 时间序列变量。
通过将 q 参数设置为 0,VARMA 模型可以像 VAR 模型一样工作;通过将 p 参数设置为 0,它也可以像 VMA 模型一样工作。VARMA 也不能处理非平稳金融时间序列数据。 矢量自回归积分移动平均(VARIMA)是一种经历差分过程的VARMA模型。
首先,应用约翰森检验(Johansen test ),结果表明英国的GDP、失业率和CPIH之间存在长期均衡关系。
因此,它们可以作为协变量来预测GDP。 正如ARIMA模型分析中提到的,GDP时间序列是不稳定的,因此必须在时间序列中实施一阶差分。 然后,还应用归一化过程。使用 MinMaxScaler() 函数后,数据将缩放到特定范围。 然后,将归一化后的数据按比例划分为训练集和测试集。
通过使用VARMAX功能,它将能够自动与AIC标准进行比较并找到最佳模型。 最优模型将具有最小的 AIC 值。 此外,预测的GDP值需要进行非标准化处理,以便与原始数据进行比较。
首先导入需要用到的Python包:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.statespace.varmax import VARMAX
from sklearn.preprocessing import MinMaxScaler
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
然后读取.csv文件的时序数据,这里使用了英国的GDP数据,CPI(通货膨胀率)和Unemployment rate(失业率)作为covariate(协变量)。
# 1. 读取csv时序数据
gdp_data = pd.read_csv('datasets/UK_GDP.csv')[["GDP"]]
inflation_data = pd.read_csv('datasets/UK_inflation.csv')[["Inflation"]]
unemployment_data = pd.read_csv('datasets/UK_unemployment.csv')[["Unemployment"]]
data_origin = gdp_data.copy()
接着对所有数据进行一阶差分,使其稳定(因为之前的博客已经对同数据进行过检测,并确定数据不稳定,所以要进行差分)。
gdp_data = gdp_data.diff().dropna()
inflation_data = inflation_data.diff().dropna()
unemployment_data = unemployment_data.diff().dropna()
然后对处理过的数据进行归一化。
scaler1 = MinMaxScaler()
scaled_gdp_data = pd.DataFrame(scaler1.fit_transform(gdp_data), columns=gdp_data.columns, index=gdp_data.index)
scaler2 = MinMaxScaler()
scaled_inflation_data = pd.DataFrame(scaler2.fit_transform(inflation_data), columns=inflation_data.columns, index=inflation_data.index)
scaler3 = MinMaxScaler()
scaled_unemployment_data = pd.DataFrame(scaler3.fit_transform(unemployment_data), columns=unemployment_data.columns, index=unemployment_data.index)
然后自动定阶,通过AIC找出最合适的参数。
merged_data = pd.concat([scaled_gdp_data, scaled_inflation_data, scaled_unemployment_data], axis=1)
train_size = int(len(merged_data))-3
train_data, test_data = merged_data[:train_size], merged_data[train_size:]
best_aic = np.inf
best_order = None
best_model = None
pq_range = range(2) # 取值范围
for p in pq_range:
for q in pq_range:
try:
model = VARMAX(train_data, order=(p, q))
result = model.fit()
aic = result.aic
if aic < best_aic:
best_aic = aic
best_order = (p, q)
best_model = result
except:
continue
print("Best order:", best_order)
print("Best AIC:", best_aic)
使用VARIMA模型进行预测,打印预测值和真实值的对比图,并计算模型RMSE和MAPE指标。
gdp_predictions = best_model.forecast(steps=len(test_data))[['GDP']]
gdp_predictions = pd.DataFrame(gdp_predictions, columns=['GDP'], index=test_data.index-1)
gdp_predictions = scaler1.inverse_transform(gdp_predictions)
actual = scaler1.inverse_transform(test_data[['GDP']])
actual = np.array(gdp_data[-3:].cumsum() + data_origin.values[127])
predictions = gdp_predictions.cumsum() + data_origin.values[127]
plt.figure()
plt.plot(actual, label='Actual')
plt.plot(predictions, label='Predicted')
plt.legend()
plt.show()
rmse = np.sqrt(mean_squared_error(actual, predictions))
mape = mean_absolute_percentage_error(actual, predictions)
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}")