Installation(下载代码-装环境)
conda create -n bk-sdm python=3.8
conda activate bk-sdm
git clone https://github.com/Nota-NetsPresso/BK-SDM.git
cd BK-SDM
pip install -r requirements.txt
torch 1.13.1
for MS-COCO evaluation & DreamBooth finetuning on a single 24GB RTX3090
torch 2.0.1
for KD pretraining on a single 80GB A10
火炬2.0.1在单个80GB A100上进行KD预训练
小的例子
PNDM采样器 50步去噪声
等效代码(仅修改SD-v1.4的U-Net,同时保留其文本编码器和图像解码器):
Distillation Pretraining
Our code was based on train_text_to_image.py of Diffusers 0.15.0.dev0
. To access the latest version, use this link.
BK-SDM的diffusers版本0.15
我的diffusers版本比较高0.24.0
检测是否能够训练(先下载数据集get_laion_data.sh再运行代码kd_train_toy.sh)
1 一个玩具数据集(11K的img-txt对)下载到。
bash scripts/get_laion_data.sh preprocessed_11k
/data/laion_aes/preprocessed_11k (1.7GB in tar.gz;1.8GB数据文件夹)。
get_laion_data.sh
需要修改,实际就是下载这三个数据集,我自行下载
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_11k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_212k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_2256k.tar.gz
我修改后下载文件名 https://... .../preprocessed_11k.tar.gz直接粘贴到网址里面也可以下载
wget $S3_URL -0 $FILe_PATH
$S3_URL 就是这个网址
$FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k
DATA_TYPE=$"preprocessed_11k" # {preprocessed_11k, preprocessed_212k, preprocessed_2256k}
FILE_NAME="${DATA_TYPE}.tar.gz"
DATA_DIR="./data/laion_aes/"
FILE_UNZIP_DIR="${DATA_DIR}${DATA_TYPE}"
FILE_PATH="${DATA_DIR}${FILE_NAME}"
if [ "$DATA_TYPE" = "preprocessed_11k" ] || [ "$DATA_TYPE" = "preprocessed_212k" ]; then
echo "-> preprocessed_11k or 212k"
S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/${FILE_NAME}"
elif [ "$DATA_TYPE" = "preprocessed_2256k" ]; then
S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.25plus/${FILE_NAME}"
else
echo "Something wrong in data folder name"
exit
fi
wget $S3_URL -O $FILE_PATH
tar -xvzf $FILE_PATH -C $DATA_DIR
echo "downloaded to ${FILE_UNZIP_DIR}"
2 一个小脚本可以用来验证代码的可执行性,并找到与你的GPU匹配的批处理大小。
批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存。
bash scripts/kd_train_toy.sh
MODEL_NAME="CompVis/stable-diffusion-v1-4"
TRAIN_DATA_DIR="./data/laion_aes/preprocessed_11k" # please adjust it if needed
UNET_CONFIG_PATH="./src/unet_config"
UNET_NAME="bk_small" # option: ["bk_base", "bk_small", "bk_tiny"]
OUTPUT_DIR="./results/toy_"$UNET_NAME # please adjust it if needed
BATCH_SIZE=2
GRAD_ACCUMULATION=4
StartTime=$(date +%s)
CUDA_VISIBLE_DEVICES=1 accelerate launch src/kd_train_text_to_image.py \
--pretrained_model_name_or_path $MODEL_NAME \
--train_data_dir $TRAIN_DATA_DIR\
--use_ema \
--resolution 512 --center_crop --random_flip \
--train_batch_size $BATCH_SIZE \
--gradient_checkpointing \
--mixed_precision="fp16" \
--learning_rate 5e-05 \
--max_grad_norm 1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--report_to="all" \
--max_train_steps=20 \
--seed 1234 \
--gradient_accumulation_steps $GRAD_ACCUMULATION \
--checkpointing_steps 5 \
--valid_steps 5 \
--lambda_sd 1.0 --lambda_kd_output 1.0 --lambda_kd_feat 1.0 \
--use_copy_weight_from_teacher \
--unet_config_path $UNET_CONFIG_PATH --unet_config_name $UNET_NAME \
--output_dir $OUTPUT_DIR
EndTime=$(date +%s)
echo "** KD training takes $(($EndTime - $StartTime)) seconds."
单GPU训练BK-SDM{Base, Small, Tiny}-0.22M数据训练
bash scripts/get_laion_data.sh preprocessed_212k
bash scripts/kd_train.sh
1 下载数据集preprocessed_212k
2 训练kd_train.sh
(256batch 训练BD-SM-Base 50K轮次需要300hours/53G单卡)
(64batch 训练BD-SM-Base 50K轮次需要60hours/28G单卡) 不理解?
单GPU训练BK-SDM{Base, Small, Tiny}-2.3M数据训练