python监测GPU使用

参考:
https://stackoverflow.com/questions/67707828/how-to-get-every-seconds-gpu-usage-in-python

自己测试

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms
# 加载数据

import subprocess as sp
import os
from threading import Thread , Timer
import sched, time

def get_gpu_memory():
    output_to_list = lambda x: x.decode('ascii').split('\n')[:-1]
    ACCEPTABLE_AVAILABLE_MEMORY = 1024
    COMMAND = "nvidia-smi --query-gpu=memory.used --format=csv"
    try:
        memory_use_info = output_to_list(sp.check_output(COMMAND.split(),stderr=sp.STDOUT))[1:]
    except sp.CalledProcessError as e:
        raise RuntimeError("command '{}' return with error (code {}): {}".format(e.cmd, e.returncode, e.output))
    memory_use_values = [int(x.split()[0]) for i, x in enumerate(memory_use_info)]
    # print(memory_use_values)
    return memory_use_values


def print_gpu_memory_every_5secs():
    """
        This function calls itself every 5 secs and print the gpu_memory.
    """
    file = open("./GPU_usage.csv", "a+")
    Timer(5.0, print_gpu_memory_every_5secs).start()
    #print(get_gpu_memory())
    mem = get_gpu_memory()[0]
    print("{}".format(mem), file=file)

print_gpu_memory_every_5secs()


transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize(mean=0.5, std=0.5)])
 
train_ds = torchvision.datasets.MNIST('data/',
                                      train=True,
                                      transform=transform,
                                      download= True)
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=256, shuffle=True,num_workers=4,pin_memory=True)
print(len(dataloader))
# 定义生成器
class Generator(nn.Module):
    def __init__(self):
        super(Generator,self).__init__()
        self.linear1 = nn.Linear(100, 256*7*7) 
        self.bn1 = nn.BatchNorm1d(256*7*7)
        self.deconv1 = nn.ConvTranspose2d(256, 128,
                                          kernel_size=(3,3),
                                          stride=1,  
                                          padding=1  
                                          )   # 得到128*7*7的图像
        self.bn2 = nn.BatchNorm2d(128)
        self.deconv2 = nn.ConvTranspose2d(128, 64,
                                          kernel_size=(4,4),
                                          stride=2,
                                          padding=1  # 64*14*14
                                          )
        self.bn3 = nn.BatchNorm2d(64)
        self.deconv3 = nn.ConvTranspose2d(64, 1,
                                          kernel_size=(4, 4),
                                          stride=2,
                                          padding=1  # 1*28*28
                                          )
    def forward(self, x):
        x = F.relu(self.linear1(x))
        x = self.bn1(x)
        x = x.view(-1, 256, 7, 7)
        x = F.relu(self.deconv1(x))
        x = self.bn2(x)
        x = F.relu(self.deconv2(x))
        x = self.bn3(x)
        x = torch.tanh(self.deconv3(x))
        return x
 # 定义判别器
# input:1,28,28
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=2) # 第一层不适用bn  64,13,13
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2) #128,6,6
        self.bn = nn.BatchNorm2d(128)
        self.fc = nn.Linear(128*6*6, 1) # 输出一个概率值
    def forward(self, x):
        x = F.dropout2d(F.leaky_relu(self.conv1(x)))
        x = F.dropout2d(F.leaky_relu(self.conv2(x)))  # (batch, 128,6,6)
        x = self.bn(x)
        x = x.view(-1, 128*6*6)   # (batch, 128,6,6)--->  (batch, 128*6*6)
        x = torch.sigmoid(self.fc(x))
        return x
 
 
# 初始化模型
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gen = Generator().to(device)
dis = Discriminator().to(device)
 
# 损失计算函数
loss_function = torch.nn.BCELoss()
 
# 定义优化器
d_optim = torch.optim.Adam(dis.parameters(), lr=1e-5)
g_optim = torch.optim.Adam(gen.parameters(), lr=1e-4)
 
def generate_and_save_images(model, epoch, test_input):
    predictions = np.squeeze(model(test_input).cpu().numpy()) 
    fig = plt.figure(figsize=(4, 4))
    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i + 1)
        plt.imshow((predictions[i] + 1) / 2, cmap='gray')  
        plt.axis("off")
    
    plt.show()

test_input = torch.randn(16, 100, device=device)
 
# 开始训练
D_loss = []
G_loss = []
# 训练循环
for epoch in range(10):
    d_epoch_loss = 0
    g_epoch_loss = 0
    count = len(dataloader)
    # 对全部的数据集做一次迭代
    for step, (img, _) in enumerate(dataloader):
        img = img.to(device)  
        size = img.shape[0]    # 返回img的第一维的大小
        random_noise = torch.randn(size, 100, device=device)  
 
        d_optim.zero_grad()  # 将上述步骤的梯度归零
        real_output = dis(img)  # 对判别器输入真实的图片,real_output是对真实图片的预测结果
        d_real_loss = loss_function(real_output,
                                    torch.ones_like(real_output, device=device)
                                    )
        d_real_loss.backward() #求解梯度
 
        # 得到判别器在生成图像上的损失
        gen_img = gen(random_noise)
        fake_output = dis(gen_img.detach())  
        d_fake_loss = loss_function(fake_output,
                                    torch.zeros_like(fake_output, device=device))
        d_fake_loss.backward()
 
        d_loss = d_real_loss + d_fake_loss
        d_optim.step()  # 优化
 
        # 得到生成器的损失
        g_optim.zero_grad()
        fake_output = dis(gen_img)
        g_loss = loss_function(fake_output,
                               torch.ones_like(fake_output, device=device))
        g_loss.backward()
        g_optim.step()
 
        with torch.no_grad():
            d_epoch_loss += d_loss.item()  
            g_epoch_loss += g_loss.item()
    with torch.no_grad():
        d_epoch_loss /= count
        g_epoch_loss /= count
        D_loss.append(d_epoch_loss)
        G_loss.append(g_epoch_loss)
        generate_and_save_images(gen, epoch, test_input)
    print('Epoch:', epoch)
plt.plot(D_loss, label='D_loss')
plt.plot(G_loss, label='G_loss')
plt.legend()
plt.show()
print("done")

最终的结果如下

python监测GPU使用_第1张图片

这个和
python监测GPU使用_第2张图片
是差不多的,

但是目前这个做法有一个问题,就是我的主程序停止了,print_GPU_memory()函数还在跑,只能自己手动关闭,这个我不知道怎么解决

你可能感兴趣的:(python,开发语言)