Hadoop mapreduce自定义分组RawComparator

本文发表于本人博客

    今天接着上次【Hadoop mapreduce自定义排序WritableComparable】文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始。

   首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下:

  /**

   * Define the comparator that controls which keys are grouped together

   * for a single call to 

   * {@link Reducer#reduce(Object, Iterable, 

   *                       org.apache.hadoop.mapreduce.Reducer.Context)}

   * @param cls the raw comparator to use

   * @throws IllegalStateException if the job is submitted

   */

  public void setGroupingComparatorClass(Class<? extends RawComparator> cls

                                         ) throws IllegalStateException {

    ensureState(JobState.DEFINE);

    conf.setOutputValueGroupingComparator(cls);

  }

从方法的源码可以看出这个方法是定义自定义键分组功能。设置这个自定义分组类必须满足extends RawComparator,那我们可以看下这个类的源码:

/**

 * <p>

 * A {@link Comparator} that operates directly on byte representations of

 * objects.

 * </p>

 * @param <T>

 * @see DeserializerComparator

 */

public interface RawComparator<T> extends Comparator<T> {

  public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);

}

然而这个RawComparator是泛型继承Comparator接口的,简单看了下那我们来自定义一个类继承RawComparator,代码如下:

public class MyGrouper implements RawComparator<SortAPI> {

    @Override

    public int compare(SortAPI o1, SortAPI o2) {

        return (int)(o1.first - o2.first);

    }

    @Override

    public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {

        int compareBytes = WritableComparator.compareBytes(b1, s1, 8, b2, s2, 8);

        return compareBytes;

    }

    

}

源码中SortAPI是上节自定义排序中的定义对象,第一个方法从注释可以看出是比较2个参数的大小,返回的是自然整数;第二个方法是在反序列化时比较,所以需要是用字节比较。接下来我们继续看看自定义MyMapper类:

public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {    

    @Override

    protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {

        String[] splied = value.toString().split("\t");

        try {

            long first = Long.parseLong(splied[0]);

            long second = Long.parseLong(splied[1]);

            context.write(new SortAPI(first,second), new LongWritable(1));

        } catch (Exception e) {

            System.out.println(e.getMessage());

        }

    }    

}

自定义MyReduce类:

public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {

    @Override

    protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {

        context.write(new LongWritable(key.first), new LongWritable(key.second));

    }

    

}

自定义SortAPI类:

public class SortAPI implements WritableComparable<SortAPI> {

    public Long first;

    public Long second;

    public SortAPI(){

        

    }

    public SortAPI(long first,long second){

        this.first = first;

        this.second = second;

    }



    @Override

    public int compareTo(SortAPI o) {

        return (int) (this.first - o.first);

    }



    @Override

    public void write(DataOutput out) throws IOException {

        out.writeLong(first);

        out.writeLong(second);

    }



    @Override

    public void readFields(DataInput in) throws IOException {

        this.first = in.readLong();

        this.second = in.readLong();

        

    }



    @Override

    public int hashCode() {

        return this.first.hashCode() + this.second.hashCode();

    }



    @Override

    public boolean equals(Object obj) {

        if(obj instanceof SortAPI){

            SortAPI o = (SortAPI)obj;

            return this.first == o.first && this.second == o.second;

        }

        return false;

    }

    

    @Override

    public String toString() {

        return "输出:" + this.first + ";" + this.second;

    }

    

}

接下来准备数据,数据如下:

1       2

1       1

3       0

3       2

2       2

1       2

上传至hdfs://hadoop-master:9000/grouper/input/test.txt,main代码如下:

public class Test {

    static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/grouper/output/";

    static final String INPUT_DIR = "hdfs://hadoop-master:9000/grouper/input/test.txt";

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        Job job = new Job(conf, Test.class.getSimpleName());    

        job.setJarByClass(Test.class);

        deleteOutputFile(OUTPUT_DIR);

        //1设置输入目录

        FileInputFormat.setInputPaths(job, INPUT_DIR);

        //2设置输入格式化类

        job.setInputFormatClass(TextInputFormat.class);

        //3设置自定义Mapper以及键值类型

        job.setMapperClass(MyMapper.class);

        job.setMapOutputKeyClass(SortAPI.class);

        job.setMapOutputValueClass(LongWritable.class);

        //4分区

        job.setPartitionerClass(HashPartitioner.class);

        job.setNumReduceTasks(1);

        //5排序分组

        job.setGroupingComparatorClass(MyGrouper.class);

        //6设置在一定Reduce以及键值类型

        job.setReducerClass(MyReduce.class);

        job.setOutputKeyClass(LongWritable.class);

        job.setOutputValueClass(LongWritable.class);

        //7设置输出目录

        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));

        //8提交job

        job.waitForCompletion(true);

    }

    

    static void deleteOutputFile(String path) throws Exception{

        Configuration conf = new Configuration();

        FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);

        if(fs.exists(new Path(path))){

            fs.delete(new Path(path));

        }

    }

}

执行代码,然后在节点上用终端输入:hadoop fs -text /grouper/output/part-r-00000查看结果:

1       2

2       2

3       0

接下来我们修改下SortAPI类的compareTo()方法:

    @Override

    public int compareTo(SortAPI o) {

        long mis = (this.first - o.first) * -1;

        if(mis != 0 ){

            return (int)mis;

        }

        else{

            return (int)(this.second - o.second);

        }

    }

再次执行并查看/grouper/output/part-r-00000文件:

3       0

2       2

1       1

这样我们就得出了同样的数据分组结果会受到排序算法的影响,比如排序是倒序那么分组也是先按照倒序数据源进行分组输出。我们还可以在map函数以及reduce函数中打印记录(过程省略)这样经过对比也得出分组阶段:键值对中key相同(即compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法返回0)的则为一组,当前组再按照顺序选择第一个往缓冲区输出(也许会存储到硬盘)。其它的相同key的键值对就不会再往缓冲区输出了。在百度上检索到这边文章,其中它的分组是把map函数输出的value全部迭代到同一个key中,就相当于上面{key,value}:{1,{2,1,2}},这个结果跟最开始没有自定义分组时是一样的,我们可以在reduce函数输出Iterable<LongWritable> values进行查看,其实我觉得这样的才算是分组吧就像数据查询一样。

    在这里我们应该要弄懂分组与分区的区别。分区是对输出结果文件进行分类拆分文件以便更好查看,比如一个输出文件包含所有状态的http请求,那么为了方便查看通过分区把请求状态分成几个结果文件。分组就是把一些相同键的键值对进行计算减少输出;分区之后数据全部还是照样输出到reduce端,而分组的话就有所减少了;当然这2个步骤也是不同的阶段执行。


这次先到这里。坚持记录点点滴滴!


你可能感兴趣的:(comparator)