【DS】Java实现二叉树的基本操作

一. 树形结构

1. 树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点

  • 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

  • 树是递归定义的。

【DS】Java实现二叉树的基本操作_第1张图片

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 .

【DS】Java实现二叉树的基本操作_第2张图片

2. 关于树的一些术语(重点)

【DS】Java实现二叉树的基本操作_第3张图片

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6

树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6

叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等节点为叶结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点

根结点:一棵树中,没有双亲结点的结点;如上图:A

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G…等节点为分支结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点被称作该结点的祖先结点;如上图:P的祖先节点为J, E, A; A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:A所有结点都是A的子孙

有序树和无序树: 若树中各结点的子树是按照一定的次序从左向右安排的,且相对次序是不能随意变换的,则称为有序树,否则称为无序树,不指明是否是有序树,则一般默认是有序树。

森林:由m(m>=0)棵互不相交的树组成的集合称为森林

3. 树的表示形式(了解)

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

  • 孩子表示法:

一个结点中有一个数据域和一些指针域(数目不确定,二叉树是两个,三叉树是三个,以此类推),这些指针都指向孩子结点

  • 孩子兄弟表示法

就是一个结点中有一个数据域和两个指针域,一个指针指向左边的孩子结点,另一个指针指向右边的兄弟结点

class Node {
    int value; // 树中存储的数据
    Node firstChild; // 第一个孩子引用
    Node nextBrother; // 下一个兄弟引用
}
【DS】Java实现二叉树的基本操作_第4张图片

4. 树的应用

文件系统管理(目录和文件)

【DS】Java实现二叉树的基本操作_第5张图片

二. 二叉树

1. 概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成

【DS】Java实现二叉树的基本操作_第6张图片

从上图可以看出:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

【DS】Java实现二叉树的基本操作_第7张图片

大自然的奇观:

【DS】Java实现二叉树的基本操作_第8张图片

2. 两种特殊的二叉树

1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是2 ^ k - 1 ,则它就是满二叉树。

2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

【DS】Java实现二叉树的基本操作_第9张图片

3. 二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2 ^ (i-1)(i>0)个结点

2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2 ^ k-1 (k>=0)

3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1

4. 具有n个结点的完全二叉树的深度k为 log(n+1)上取整

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:

  • 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点

  • 若2i+1

  • 若2i+2

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
3.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
4.一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
答案:
1.B
2.A
3.B
4.B

4. 二叉树的存储

二叉树的存储结构分为:顺序存储和类似于链表的链式存储;

二叉树的顺序存储,指的是使用顺序表存储二叉树; 需要注意的是,顺序存储只适用于完全二叉树; 完全二叉树的顺序存储,仅需从根节点开始,按照层次依次将树中节点存储到数组即可;

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent; // 当前节点的根节点
}

三.实现二叉树的基本操作

1. 二叉树结点的构成

这里采用的是孩子表示法, 所以节点类(使用的是静态内部类)中除了数值域外要有两个引用来表示节点的左子树和右子树.

static class TreeNode {
        public char val;//数值
        public TreeNode left;//左子树引用
        public TreeNode right;//右子树引用
        public TreeNode(char val) {
            this.val = val;
        }
    }
【DS】Java实现二叉树的基本操作_第10张图片

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

2. 二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

【DS】Java实现二叉树的基本操作_第11张图片

在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

  • NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。

  • LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。

  • LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。

【DS】Java实现二叉树的基本操作_第12张图片

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 1 5 6 4 1

2.1 前序遍历
// 前序遍历
    void preOrder(TreeNode root){
        if(root == null){
            return;
        }
        System.out.print(root.val + " ");
        preOrder(root.left);
        preOrder(root.right);
    }
2.2 中序遍历
 // 中序遍历
    void inOrder(TreeNode root){
        if(root == null){
            return;
        }
        inOrder(root.left);
        System.out.print(root.val + " ");
        inOrder(root.right);
    }
2.3 后序遍历
// 后序遍历
    void postOrder(TreeNode root){
        if(root == null){
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val + " ");
    }

3. 获取整棵二叉树的节点个数

通过递归解决子问题的思想来实现 , 本质上还是在遍历二叉树

节点的个数等于根节点(1) + 左子树节点个数 + 右子树节点个数 ,

递归结束条件: 如果结点root为空,则返回。

// 获取树中节点的个数
    int size(TreeNode root){
        if(root == null){
            return 0;
        }
        return size(root.left) + size(root.right) + 1;
    }

4. 获取二叉树叶子节点的个数

  1. 如果结点为空,表示该树没有结点返回0,

  1. 如果结点的左右子树都为空,表示该结点为叶子结点,计算器+1或者返回1。

  1. 一棵二叉树的叶子结点数为左右子树叶子结点数之和。

// 获取叶子节点的个数
    int getLeafNodeCount(TreeNode root){
        if(root == null){
            return 0;
        }
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
    }

5. 获取第K层节点的个数

  1. 如果结点为空,返回0,k为1,返回1。

  1. 一棵二叉树第k层结点数为 左子树和右子树第k-1层次的结点数之和。

当k=1时,表示第一层次的结点个数,结点个数为1,每递归一层,从根节点来说是第k层, 那么相对于根节点的子树来说就是k-1层,所以一棵二叉树第k层结点数为左子树,右子树第k-1层次的结点数之和。

// 获取第K层节点的个数
    int getKLevelNodeCount(TreeNode root,int k){
        if(root == null || k <= 0){
            return 0;
        }
        if(k == 1){
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);
    }

6. 获取二叉树的高度(深度)

  1. 如果根结点为空,则这棵树的高度为0,返回0。

  1. 一棵二叉树的最深深度即为左右子树深度的最大值加上1。

// 获取二叉树的高度
    int getHeight(TreeNode root){
        if(root == null){
            return 0;
        }
        return Math.max(getHeight(root.left),getHeight(root.right)) + 1;
    }

7. 在二叉树中寻找目标值

通过遍历去搜索比较即可, 前中后序遍历都可以.

// 检测值为value的元素是否存在
    TreeNode find(TreeNode root, int val){
        if(root == null){
            return null;
        }
        if(root.val == val){
            return root;
        }

        TreeNode ret1 = find(root.left,val);
        if(ret1 != null){
            return ret1;
        }
        TreeNode ret2 = find(root.right,val);
        if(ret2 != null){
            return ret2;
        }
        return null;
    }

8. 判断二叉树是不是完全二叉树

判断一棵树是不是完全二叉树,我们可以设计一个队列来实现,

完全二叉树按照从上至下, 从左到右的顺序节点之间是连续着没有空位置的, 这里如果有不了解的可以看一看二叉树概念篇的博客; 如果一颗二叉树不是完全二叉树 , 那么树中的节点之间是有空着的位置的(null); 只要找到这个位置, 后面再没有节点了就是完全二叉树; 如果空位置后面还有节点就不是完全二叉树;

我们可以设计一个队列来实现, 首先将根节点入队,然后循环每次将队头元素出队同时将出队节点的左右孩子结点(包括空结点)依次入队,以此类推,直到获取的结点为空(就是上面说的空位置),此时判断队列中的所有元素是否为空,如果为空,就表示这棵二叉树为完全二叉树 ; 否则就不是完全二叉树.

//判断一棵树是不是完全二叉树
    public boolean isCompleteTree(TreeNode root) {
        if(root == null) {
            return true;
        }
        Queue queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            if(cur == null) {
                break;
            }
            queue.offer(cur.left);
            queue.offer(cur.right);
        }
        //判断队列中是否有不为空的元素
        int size = queue.size();
        while(size != 0) {
            size--;
            if(queue.poll() != null) {
                return false;
            }
        }
        return true;
    }

9. 层序遍历

层序遍历的实现方式与判断一棵二叉树是否是完全二叉树类似,都是使用队列来进行实现,只有一点不同, 入队时如果结点为空,则不需要入队,其他的地方完全相同, 出队时获取到节点中的元素, 直到最终队列和当前结点均为空时,表示遍历结束。

    //层序遍历
    void levelOrder(TreeNode root){
        List> list = new ArrayList>();
        if(root == null){
            return;
        }
        Queue qu = new LinkedList<>();
        qu.offer(root);
        while (! qu.isEmpty()){
            TreeNode cur = qu.poll();
            System.out.print(cur.val + " ");
            if(cur.left != null){
                qu.offer(cur.left);
            }
            if(cur.right != null){
                qu.offer(cur.right);
            }
        }
    }

你可能感兴趣的:(Java,-,数据结构,算法,数据结构,c++,链表,java)