JAVA基础+集合+多线程+JVM

1. Java 基础

1.1. 面向对象和面向过程的区别

面向过程性能比面向对象高。 因为类调用时需要实例化,开销比较大,比较消耗资源,所以当性能是最重要的考量因素的时候 等一般采用面向过程开发。但是,面向过程没有面向对象易维护、易复用、易扩展。

1.2. Java 语言有哪些特点?

  1. 简单易学;
  2. 面向对象
  3. 平台无关性( Java 虚拟机实现平台无关性);
  4. 可靠性;
  5. 安全性;
  6. 支持多线程;
  7. 支持网络编程并且很方便( Java 语言诞生本身就是为简化网络编程设计的,因此 Java 语言不仅支持网络编程而且很方便);
  8. 编译与解释并存;

1.3. 关于 JVM JDK 和 JRE 最详细通俗的解答

1.3.1. JVM

Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM 有针对不同系统的特定实现(Windows,Linux,macOS),目的是使用相同的字节码,它们都会给出相同的结果。

Java 程序从源代码到运行一般有下面 3 步:

Java程序运行过程

总结:

Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM 有针对不同系统的特定实现(Windows,Linux,macOS),目的是使用相同的字节码,它们都会给出相同的结果。字节码和不同系统的 JVM 实现是 Java 语言“一次编译,随处可以运行”的关键所在。

1.3.2. JDK 和 JRE

JDK 是 Java Development Kit,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切,还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译程序。

JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM),Java 类库,java 命令和其他的一些基础构件。但是,它不能用于创建新程序。

1.4. 字符型常量和字符串常量的区别?

  1. 形式上: 字符常量是单引号引起的一个字符; 字符串常量是双引号引起的若干个字符
  2. 含义上: 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)
  3. 占内存大小 字符常量只占 2 个字节; 字符串常量占若干个字节 (注意: char 在 Java 中占两个字节)

1.5. 构造器 Constructor 是否可被 override?

Constructor 不能被 override(重写),但是可以 overload(重载),所以你可以看到一个类中有多个构造函数的情况。

1.6. 重载和重写的区别

重载:

发生在同一个类中,方法名必须相同,参数类型不同、个数不同、顺序不同,方法返回值和访问修饰符可以不同。

重写:

重写发生在运行期,是子类对父类的允许访问的方法的实现过程进行重新编写。

  1. 返回值类型、方法名、参数列表必须相同,抛出的异常范围小于等于父类,访问修饰符范围大于等于父类。
  2. 如果父类方法访问修饰符为 private/final/static 则子类就不能重写该方法,但是被 static 修饰的方法能够被再次声明。
  3. 构造方法无法被重写

暖心的 Guide 哥最后再来个图表总结一下!

区别点 重载方法 重写方法
发生范围 同一个类 子类
参数列表 必须修改 一定不能修改
返回类型 可修改 子类方法返回值类型应比父类方法返回值类型更小或相等
异常 可修改 子类方法声明抛出的异常类应比父类方法声明抛出的异常类更小或相等;
访问修饰符 可修改 一定不能做更严格的限制(可以降低限制)
发生阶段 编译期 运行期

1.7. Java 面向对象编程三大特性: 封装 继承 多态

1.7.1. 封装

通常认为封装是把数据和操作数据的方法绑定起来,对数据的访问只能通过已定义的接口。

1.7.2. 继承

继承是从已有类得到继承信息创建新类的过程。提供继承信息的类被称为父类(超类、基类);得到继承信息的类被称为子类(派生类)。

关于继承如下 3 点请记住:

  1. 子类拥有父类对象所有的属性和方法(包括私有属性和私有方法),但是父类中的私有属性和方法子类是无法访问,只是拥有
  2. 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
  3. 子类可以用自己的方式实现父类的方法。(以后介绍)。
1.7.3. 多态

多态性是指允许不同子类型的对象对同一消息作出不同的响应。简单的说就是用同样的对象引用调用同样的方法但是做了不同的事情。多态性分为编译时的多态性和运行时的多态性。方法重载(overload)实现的是编译时的多态性(也称为前绑定),而方法重写(override)实现的是运行时的多态性(也称为后绑定)

1.8. String StringBuffer 和 StringBuilder 的区别是什么? String 为什么是不可变的?

可变性

简单的来说:String 类中使用 final 关键字修饰字符数组来保存字符串,private final char value[],所以 String 对象是不可变的。

StringBuilderStringBuffer 都继承自 AbstractStringBuilder 类,在 AbstractStringBuilder 中也是使用字符数组保存字符串char[]value 但是没有用 final 关键字修饰,所以这两种对象都是可变的。

线程安全性

String 中的对象是不可变的,也就可以理解为常量,线程安全。StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。

StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。

对于三者使用的总结:

  1. 操作少量的数据: 适用 String
  2. 单线程操作字符串缓冲区下操作大量数据: 适用 StringBuilder
  3. 多线程操作字符串缓冲区下操作大量数据: 适用 StringBuffer

1.9. 自动装箱与拆箱

  • 装箱:将基本类型用它们对应的引用类型包装起来;
  • 拆箱:将包装类型转换为基本数据类型;

更多内容见:深入剖析 Java 中的装箱和拆箱

1.10. 在一个静态方法内调用一个非静态成员为什么是非法的?

由于静态方法可以不通过对象进行调用,因此在静态方法里,不能调用其他非静态成员。

1.11. 在 Java 中定义一个不做事且没有参数的构造方法的作用

Java 程序在执行子类的构造方法之前,如果没有用 super()来调用父类特定的构造方法,则会调用父类中“没有参数的构造方法”。因此,如果父类中只定义了有参数的构造方法,而在子类的构造方法中又没有用 super()来调用父类中特定的构造方法,则编译时将发生错误.

1.12. 接口和抽象类的异同是什么?

  1. [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WjnXYDho-1634190308595)(C:\Users\86156\AppData\Roaming\Typora\typora-user-images\image-20211013131521765.png)]

1.13. 成员变量与局部变量的区别有哪些?

  1. 从语法形式上看:成员变量是属于类的,而局部变量是在方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰。
  2. 从变量在内存中的存储方式来看:如果成员变量是使用static修饰的,那么这个成员变量是属于类的,如果没有使用static修饰,这个成员变量是属于实例的。对象存于堆内存,如果局部变量类型为基本数据类型,那么存储在栈内存,如果为引用数据类型,那存放的是指向堆内存对象的引用或者是指向常量池中的地址。
  3. 从变量在内存中的生存时间上看:成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动消失。
  4. 成员变量如果没有被赋初值:则会自动以类型的默认值而赋值(一种情况例外:被 final 修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。

1.14. 一个类的构造方法的作用是什么? 若一个类没有声明构造方法,该程序能正确执行吗? 为什么?

主要作用是完成对类对象的初始化工作。可以执行。因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。

1.15. 构造方法有哪些特性?

  1. 名字与类名相同。
  2. 没有返回值,但不能用 void 声明构造函数。
  3. 生成类的对象时自动执行,无需调用。

1.16. 静态方法和实例方法有何不同

  1. 在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式。

    而实例方法只有后面这种方式。也就是说,调用静态方法可以无需创建对象。

  2. 静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),而不允许访问实例成员变量和实例方法;

    实例方法则无此限制。

1.17. 对象的相等与指向他们的引用相等,两者有什么不同?

对象的相等,比的是内存中存放的内容是否相等。而引用相等,比较的是他们指向的内存地址是否相等。

1.18. == 与 equals(重要)

equals 和== 最大的区别是一个是方法一个是运算符。

==:如果比较的对象是基本数据类型,则比较的是数值是否相等;如果比较的是引用数据类型,则比较的是对象的地址值是否相等。

equals():用来比较方法两个对象的内容是否相等。

注意:equals 方法不能用于基本数据类型的变量,如果没有对 equals 方法进行重写,则比较的是引用类型的变

量所指向的对象的地址

1.19. hashCode 与 equals (重要)

如果两个对象相同(equals 方法返回 true),那

么它们的 hashCode 值一定要相同;如果两个对象的 hashCode 相同,它们并不一定相同。

1、为什么重写 equals 时必须重写 hashCode 方法?

如果两个对象相等,则 hashcode 一定也是相同的。两个对象相等,对两个对象分别调用 equals 方法都返回 true。但是,两个对象有相同的 hashcode 值,它们也不一定是相等的 。因此,equals 方法被覆盖过,则 hashCode 方法也必须被覆盖。

1.20. Java 中只有值传递?

Java 语言的方法调用只支持参数的值传递。当一个对象实例作为一个参数被传递到方法中时,参数的值就是对该对象的引用。对象的属性可以在被调用过程中被改变,但对对象引用的改变是不会影响到调用者的。

2.1.21. 关于 final 关键字的一些总结

final 关键字主要用在三个地方:变量、方法、类。

  1. 对于一个 final 变量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改;如果是引用类型的变量,则在对其初始化之后便不能再让其指向另一个对象。
  2. 当用 final 修饰一个类时,表明这个类不能被继承。final 类中的所有成员方法都会被隐式地指定为 final 方法。
  3. 使用 final 方法的原因是把方法锁定,以防任何继承类修改它的含义

1.22. Java 中的异常处理

1.22.1. Java 异常类层次结构图

图片来自:https://simplesnippets.tech/exception-handling-in-java-part-1/

在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类 Exception(异常)和 Error(错误)。Exception 能被程序本身处理(try-catch), Error 是无法处理的(只能尽量避免)。

ExceptionError 二者都是 Java 异常处理的重要子类,各自都包含大量子类。

  • Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 受检查异常(必须处理) 和 不受检查异常(可以不处理)。
  • ErrorError 属于程序无法处理的错误 ,我们没办法通过 catch 来进行捕获 。例如,Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

不受检查异常

Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,例如:NullPoin​terExceptionNumberFormatException(字符串转换为数字)、ArrayIndexOutOfBoundsException(数组越界)、ClassCastException(类型转换错误)、ArithmeticException(算术错误)等。

1.22.2. Throwable 类常用方法
  • public string getMessage():返回异常发生时的简要描述
  • public string toString():返回异常发生时的详细信息
  • public string getLocalizedMessage():返回异常对象的本地化信息。使用 Throwable 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 getMessage()返回的结果相同
  • public void printStackTrace():在控制台上打印 Throwable 对象封装的异常信息
1.22.3. 异常处理总结
  • try块: 用于捕获异常。其后可接零个或多个 catch 块,如果没有 catch 块,则必须跟一个 finally 块。
  • catch块: 用于处理 try 捕获到的异常。
  • finally 块: 无论是否捕获或处理异常,finally 块里的语句都会被执行。当在 try 块或 catch 块中遇到 return 语句时,finally 语句块将在方法返回之前被执行。

在以下 3 种特殊情况下,finally 块不会被执行:

  1. tryfinally块中用了 System.exit(int)退出程序。但是,如果 System.exit(int) 在异常语句之后,finally 还是会被执行
  2. 程序所在的线程死亡。
  3. 关闭 CPU。

下面这部分内容来自 issue:https://github.com/Snailclimb/JavaGuide/issues/190。

注意: 当 try 语句和 finally 语句中都有 return 语句时,在方法返回之前,finally 语句的内容将被执行,并且 finally 语句的返回值将会覆盖原始的返回值。如下:

    public static int f(int value) {
        try {
            return value * value;
        } finally {
            if (value == 2) {
                return 0;
            }
        }
    }

如果调用 f(2),返回值将是 0,因为 finally 语句的返回值覆盖了 try 语句块的返回值。

1.23. Java 序列化中如果有些字段不想进行序列化,怎么办?

对于不想进行序列化的变量,使用 transient 关键字修饰。transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化。transient 只能修饰变量,不能修饰类和方法。

1.24. Java 中 IO 流

1.24.1. Java 中 IO 流分为几种?
  • 按照流的流向分,可以分为输入流和输出流;

  • 按照操作单元划分,可以划分为字节流和字符流;

  • 按照流的角色划分为节点流和处理流。

  • InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。

  • OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

按操作方式分类结构图:

IO-操作方式分类

按操作对象分类结构图:

IO-操作对象分类

1.24.2. 既然有了字节流,为什么还要有字符流?

回答:字符流是由 JVM将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。

2.1.24.3. BIO,NIO,AIO 有什么区别?
  • BIO (Blocking I/O): 同步阻塞 I/O 模式,数据的读取写入必须阻塞在一个线程内等待其完成。在活动连接数不是特别高的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单。
  • NIO (Non-blocking/New I/O): NIO 是一种同步非阻塞的 I/O 模型。它支持面向缓冲的,基于通道的 I/O 操作方法。 NIO 提供了与传统 BIO 模型中的 SocketServerSocket 相对应的 SocketChannelServerSocketChannel 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞 I/O 来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发
  • AIO (Asynchronous I/O): 它是异步非阻塞的 IO 模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。

1.25. 深拷贝 vs 浅拷贝

  1. 浅拷贝:对基本数据类型进行值传递,对引用数据类型进行引用传递的拷贝,此为浅拷贝。
  2. 深拷贝:对基本数据类型进行值传递,对引用数据类型,创建一个新的对象,并复制其内容,此为深拷贝。

deep and shallow copy

2. Java集合

2.1. 说说List,Set,Map三者的区别?

  • List: 存储的元素是有序的、可重复的。
  • Set: 存储的元素是无序的、不可重复的。
  • Map: 使用键值对(kye-value)存储Key 是无序的、不可重复的,value 是无序的、可重复的,每个键最多映射到一个值。

2.2. Arraylist 与 LinkedList 区别?

数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。

随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。

增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。

2.3. ArrayList 与 Vector 区别呢?为什么要用Arraylist取代Vector呢?

线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。
性能:ArrayList 在性能方面要优于 Vector。
扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。

2.4. 说一说 ArrayList 的扩容机制吧

ArrayList扩容发生在add()方法调用的时候,判断是否需要扩容,如果需要扩容则将数组的内存空间长度 扩容至原来的1.5倍,并将原有数组内容复制到新数组中去。

2.5. HashMap 和 Hashtable 的区别

  1. 线程是否安全: HashMap 是非线程安全的,HashTable 是线程安全的,因为 HashTable 内部的方法基本都经过synchronized 修饰。

  2. 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它;

  3. 对 Null key 和 Null value 的支持: HashMap 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个;HashTable 不允许有 null 键和 null 值,否则会抛出 NullPointerException

  4. 初始容量大小和每次扩充容量大小的不同 :

    ① 创建时如果不指定容量初始值,Hashtable 默认的初始大小为 11,之后每次扩充,容量变为原来的 2n+1。HashMap 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。

    ② 创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为 2 的幂次方大小(HashMap 中的tableSizeFor()方法保证,下面给出了源代码)。也就是说 HashMap 总是使用 2 的幂作为哈希表的大小,后面会介绍到为什么是 2 的幂次方。

  5. 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。

2.6. HashMap 和 HashSet区别

如果你看过 HashSet 源码的话就应该知道:HashSet 底层就是基于 HashMap 实现的。

HashMap HashSet
实现了 Map 接口 实现 Set 接口
存储键值对 仅存储对象
调用 put()向 map 中添加元素 调用 add()方法向 Set 中添加元素
HashMap 使用键(Key)计算 hashcode HashSet 使用成员对象来计算 hashcode 值,对于两个对象来说 hashcode 可能相同,所以equals()方法用来判断对象的相等性

2.7. HashSet如何检查重复

当你把对象加入HashSet时,HashSet 会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode 值作比较,如果没有相符的 hashcodeHashSet 会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用equals()方法来检查 hashcode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让加入操作成功。

hashCode()equals() 的相关规定:

  1. 如果两个对象相等,则 hashcode 一定也是相同的
  2. 两个对象相等,对两个 equals() 方法返回 true
  3. 两个对象有相同的 hashcode 值,它们也不一定是相等的

综上,如果一个类的 equals() 方法被覆盖过,则 hashCode() 方法也必须被覆盖。

2.8. HashMap的底层实现

2.8.1. JDK1.8 之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用的。数组中每一格就是一个链表。HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1Di1jW3x-1634190308601)(C:/Users/86156/Desktop/毕设/JavaGuide-Interview-master/docs/images/jdk1.8之前的内部结构-HashMap.png)]

2.2.8.2. JDK1.8 之后

相比于之前的版本, JDK1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Gy6EVYJP-1634190308602)(C:/Users/86156/Desktop/毕设/JavaGuide-Interview-master/docs/images/jdk1.8之后的内部结构-HashMap.png)]

TreeMap、TreeSet 以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

2.9. HashMap 的长度为什么是2的幂次方

为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648到2147483647,前后加起来大概40亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ (n - 1) & hash”。(n代表数组长度)。这也就解释了 HashMap 的长度为什么是2的幂次方。

这个算法应该如何设计呢?

我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。

2.10. 为什么HashMap不适合多线程操作

主要原因在于 并发下的Rehash 会造成元素之间会形成一个循环链表。不过,jdk 1.8 后解决了这个问题,但是还是不建议在多线程下使用 HashMap,因为多线程下使用 HashMap 还是会存在其他问题比如数据丢失。并发环境下推荐使用 ConcurrentHashMap 。

2.11. ConcurrentHashMap 和 Hashtable 的区别

ConcurrentHashMapHashtable 的区别主要体现在实现线程安全的方式上不同。

  • 底层数据结构: JDK1.7 的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟 HashMap1.8 的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;

  • 实现线程安全的方式(重要):

    在 JDK1.7 的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。 到了 JDK1.8 的时候已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。

    **② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

两者的对比图:

HashTable:

JAVA基础+集合+多线程+JVM_第1张图片

http://www.cnblogs.com/chengxiao/p/6842045.html>

JDK1.7 的 ConcurrentHashMap:

JDK1.7的ConcurrentHashMap

http://www.cnblogs.com/chengxiao/p/6842045.html>

JDK1.8 的 ConcurrentHashMap:

Java8 ConcurrentHashMap 存储结构(图片来自 javadoop)

JDK1.8 的 ConcurrentHashMap 不在是 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。当冲突链表达到一定长度时,链表会转换成红黑树。

2.12. ConcurrentHashMap线程安全的具体实现方式/底层具体实现

2.12.1. JDK1.7(上面有示意图)

首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成

Segment 实现了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色。HashEntry 用于存储键值对数据。

static class Segment<K,V> extends ReentrantLock implements Serializable {
}

一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和 HashMap 类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 的锁。

12.2. JDK1.8 (上面有示意图)

ConcurrentHashMap 取消了 Segment 分段锁,采用 CAS 和 synchronized 来保证并发安全。数据结构跟 HashMap1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N)))

synchronized 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,效率又提升 N 倍。

2.13. 比较 HashSet、LinkedHashSet 和 TreeSet 三者的异同

HashSetSet 接口的主要实现类 ,HashSet 的底层是 HashMap,线程不安全的,可以存储 null 值;

LinkedHashSetHashSet 的子类,能够按照添加的顺序遍历;

TreeSet 底层使用红黑树,能够按照添加元素的顺序进行遍历,排序的方式有自然排序和定制排序。

2.14. 集合框架底层数据结构总结

先来看一下 Collection 接口下面的集合。

2.14.1. List
  • ArraylistObject[]数组
  • VectorObject[]数组
  • LinkedList: 双向链表(JDK1.6 之前为循环链表,JDK1.7 取消了循环)
2.14.2. Set
  • HashSet(无序,唯一): 基于 HashMap 实现的,底层采用 HashMap 来保存元素
  • LinkedHashSetLinkedHashSetHashSet 的子类,并且其内部是通过 LinkedHashMap 来实现的。有点类似于我们之前说的 LinkedHashMap 其内部是基于 HashMap 实现一样,不过还是有一点点区别的
  • TreeSet(有序,唯一): 红黑树(自平衡的排序二叉树)

再来看看 Map 接口下面的集合。

2.14.3. Map
  • HashMap: JDK1.8 之前 HashMap 由数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间
  • LinkedHashMapLinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构即由数组和链表或红黑树组成。另外,LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。详细可以查看:《LinkedHashMap 源码详细分析(JDK1.8)》
  • Hashtable: 数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的
  • TreeMap: 红黑树(自平衡的排序二叉树)

3. 多线程

3.1. 什么是线程和进程?

3.1.1. 何为进程?

进程就是正在执行的程序,是操作系统资源分配的基本单位。

3.1.2. 何为线程?

线程是进程内部的不同的执行路径,是操作系统独立调度的基本单位。一个进程中可以有多个线程,它们共享进程资源。

3.1.3 进程与线程有什么区别?

拥有资源

进程是资源分配的基本单位,但是线程不拥有资源,线程可以访问隶属于进程的资源。

调度

线程是独立调度的基本单位,在同一进程中,线程的切换不会引起进程切换,从一个进程中的线程切换到另一个进程中的线程时,会引起进程切换。

系统开销

由于创建或撤销进程时,系统都要为之分配或回收资源,如内存空间、I/O 设备等,所付出的开销远大于创建或撤销线程时的开销。

通信方面

线程间可以通过直接读写同一进程中的数据进行通信,但是进程通信需要借助 IPC

3.2. 说说并发与并行的区别?

  • 并发: 同一时间段,多个任务都在执行 (单位时间内不一定同时执行);
  • 并行: 单位时间内,多个任务同时执行。

3.3. 为什么要使用多线程呢?

  • 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。
  • 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础。

3.4. 使用多线程可能带来什么问题?

并发编程的目的就是为了能提高程序的执行效率、提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏上下文切换死锁

3.5. 说说线程的生命周期和状态?

1.新建状态:当用new操作符创建一个线程时但是没有调用Start 方法。
2.可运行态:当调用了线程对象的start()方法,该线程就进入了可运行态等待获取cpu 的使用权。
3.运行态:可运行状态的线程获得了cpu 时间片 ,执行程序代码。
4.阻塞态:是指正在运行的线程没有运行结束,暂时让出CPU,这时其他处于就绪状态的线程就可以获得CPU时间,进入运行状态。
(1)等待阻塞:运行的线程执行wait()方法,jvm会把该线程放入waitSet线程池(释放锁);
(2)同步阻塞(死锁):运行的线程在获取其他对象的同步锁时,该对象的同步锁被别的线程锁占用,则jvm会将该线程放入线程池中;
(3)其他阻塞:运行的线程执行sleep方法或者执行t.join()方法被别的线程打断,jvm把该线程置为阻塞状态,"当sleep超时或者join线程结束时线程重新进入就绪状态
5.死亡:线程执行完run方法,或者因异常退出了run()方法,则该线程结束生命周期。

3.6. 什么是上下文切换?

概来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

3.8. 什么是线程死锁?如何避免死锁?

3.8.1. 认识线程死锁

线程死锁指两个或多个线程在同一资源上相互占用,同时请求锁定对方的资源,从而导致恶性循环的现象。

死锁必须具备以下四个条件:
1、互斥条件:某一资源任意一个时刻只由一个线程占用。
2、请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3、不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
4、循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

3.8.2. 如何避免线程死锁?

上面说了产生死锁的四个必要条件,为了避免死锁,我们只要破坏产生死锁的四个条件中的其中一个就可以了。现在我们来挨个分析一下:

  1. 破坏互斥条件 :这个条件我们没有办法破坏,因为我们用锁本来就是想让他们互斥的(临界资源需要互斥访问)。
  2. 破坏请求与保持条件 :一次性申请所有的资源。
  3. 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
  4. 破坏循环等待条件 :按某一顺序申请资源,释放资源则反序释放

3.9. 说说 sleep() 方法和 wait() 方法区别和共同点?

相同点:两者都可以暂停线程的执行。

不同点:sleep()方法为Thread的静态方法。在指定时间内让当前正在执行的线程暂停执行,进入阻塞状态。但"不会释放锁标志"。

wait()方法: wait方法是属于Object类中的方法。在其他线程调用对象的notify或notifyAll方法前,导致当前线程阻塞。线程"会释放掉它所占有的锁标志",从而使别的线程有机会抢占该锁。

3.10. 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?

new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。

但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。

总结: 调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gnKKy9NO-1634190308605)(C:/Users/86156/Desktop/毕设/JavaGuide-Interview-master/docs/images/synchronized/synchronized关键字.png)]

3.11. 说一说自己对于 synchronized 关键字的了解

synchronized 关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

另外,在 Java 早期版本中,synchronized 属于 重量级锁,效率低下。

为什么呢?

因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。

庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对 synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。主要的优化方式就是引入了大量的锁进行锁的升级。其目的是为了减低了锁带来的性能消耗。

2.3.12. 说说自己是怎么使用 synchronized 关键字

synchronized 关键字最主要的三种使用方式:

1.修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁

synchronized void method() {
  //业务代码
}

2.修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁。因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管 new 了多少个对象,只有一份)。所以,如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁

synchronized staic void method() {
  //业务代码
}

3.修饰代码块 :指定加锁对象,对给定对象/类加锁。synchronized(this|object) 表示进入同步代码库前要获得给定对象的锁synchronized(类.class) 表示进入同步代码前要获得 当前 class 的锁

synchronized(this) {
  //业务代码
}

总结:

  • synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁。
  • synchronized 关键字加到实例方法上是给对象实例上锁。
  • 尽量不要使用 synchronized(String a) 因为 JVM 中,字符串常量池具有缓存功能!

下面我以一个常见的面试题为例讲解一下 synchronized 关键字的具体使用。

面试中面试官经常会说:“单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理呗!”

双重校验锁实现对象单例(线程安全)

public class Singleton {

    private volatile static Singleton uniqueInstance;

    private Singleton() {
    }

    public static Singleton getUniqueInstance() {
       //先判断对象是否已经实例过,没有实例化过才进入加锁代码
        if (uniqueInstance == null) {
            //类对象加锁
            synchronized (Singleton.class) {
                if (uniqueInstance == null) {
                    uniqueInstance = new Singleton();
                }
            }
        }
        return uniqueInstance;
    }
}

另外,需要注意 uniqueInstance 采用 volatile 关键字修饰也是很有必要。

uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

  1. uniqueInstance 分配内存空间
  2. 初始化 uniqueInstance
  3. uniqueInstance 指向分配的内存地址

但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。

使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。

3.13. 构造方法可以使用 synchronized 关键字修饰么?

先说结论:构造方法不能使用 synchronized 关键字修饰。

构造方法本身就属于线程安全的,不存在同步的构造方法一说。

3.14. 讲一下 synchronized 关键字的底层原理

synchronized 关键字底层原理属于 JVM 层面。

2.3.14.1. synchronized 同步语句块的情况
public class SynchronizedDemo {
	public void method() {
		synchronized (this) {
			System.out.println("synchronized 代码块");
		}
	}
}

JAVA基础+集合+多线程+JVM_第2张图片

当synchronized作用于同步代码块时,是使用monitorenter和monitorexit两个指令。它们分别位于同步代码块的开始和结束位置。
在执行monitorenter时,会尝试获取对象的锁,如果锁的计数器为 0 则表示锁可以被获取,获取后将锁计数器加 1。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

在执行 monitorexit 指令后,将锁计数器设为 0,表明锁被释放。

3.14.1. synchronized 修饰方法的的情况
public class SynchronizedDemo2 {
	public synchronized void method() {
		System.out.println("synchronized 方法");
	}
}

JAVA基础+集合+多线程+JVM_第3张图片

当synchronized作用于方法时,JVM通过在方法访问标识符【flags】中"加ACC_SYNCHRONIZED"标识,该标识指明了该方法是一个同步方法。
当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先持有monitor,然后再执行方法,最后再方法完成【无论是正常完成还是非正常完成】时释放monitor。

3.15. 讲一下 JMM(Java 内存模型)

在 JDK1.2 之前,Java 的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的。而在当前的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致

JAVA基础+集合+多线程+JVM_第4张图片

要解决这个问题,就需要把变量声明为**volatile**,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

所以,volatile 关键字 除了防止 JVM 的指令重排 ,还有一个重要的作用就是保证变量的可见性。

JAVA基础+集合+多线程+JVM_第5张图片

3.16. 说说 synchronized 关键字和 volatile 关键字的区别

synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!

  • volatile 关键字是线程同步的轻量级实现,所以**volatile性能肯定比synchronized关键字要好**。但是**volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块**。
  • volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
  • volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。

3.18. ThreadLocal 了解么?

通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢? JDK 中提供的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get()set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

再举个简单的例子:比如有两个人去宝屋收集宝物,这两个共用一个袋子的话肯定会产生争执,但是给他们两个人每个人分配一个袋子的话就不会出现这样的问题。如果把这两个人比作线程的话,那么 ThreadLocal 就是用来避免这两个线程竞争的。

3.19. ThreadLocal 原理讲一下

Thread类源代码入手。

public class Thread implements Runnable {
 ......
//与此线程有关的ThreadLocal值。由ThreadLocal类维护
ThreadLocal.ThreadLocalMap threadLocals = null;

//与此线程有关的InheritableThreadLocal值。由InheritableThreadLocal类维护
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
 ......
}

从上面Thread类 源代码可以看出Thread 类中有一个 threadLocals 和 一个 inheritableThreadLocals 变量,它们都是 ThreadLocalMap 类型的变量,我们可以把 ThreadLocalMap 理解为ThreadLocal 类实现的定制化的 HashMap。默认情况下这两个变量都是 null,只有当前线程调用 ThreadLocal 类的 setget方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap类对应的 get()set()方法。

ThreadLocal类的set()方法

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

通过上面这些内容,我们足以通过猜测得出结论:最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。 ThrealLocal 类中可以通过Thread.currentThread()获取到当前线程对象后,直接通过getMap(Thread t)可以访问到该线程的ThreadLocalMap对象。

每个Thread中都具备一个ThreadLocalMap,而ThreadLocalMap可以存储以ThreadLocal为 key ,Object 对象为 value 的键值对。

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
 ......
}

比如我们在同一个线程中声明了两个 ThreadLocal 对象的话,会使用 Thread内部都是使用仅有那个ThreadLocalMap 存放数据的,ThreadLocalMap的 key 就是 ThreadLocal对象,value 就是 ThreadLocal 对象调用set方法设置的值。

JAVA基础+集合+多线程+JVM_第6张图片

ThreadLocalMapThreadLocal的静态内部类。

JAVA基础+集合+多线程+JVM_第7张图片

3.20. ThreadLocal 内存泄露问题了解不?

ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。这样一来,ThreadLocalMap 中就会出现 key 为 null 的 Entry。假如我们不做任何措施的话,value 永远无法被 GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap 实现中已经考虑了这种情况,在调用 set()get()remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后 最好手动调用remove()方法

      static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

弱引用介绍:

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。

3.21. 线程池

21.1. 为什么要用线程池?

池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。

使用线程池的好处

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
21.2. 实现 Runnable 接口和 Callable 接口的异同

相同点
1、两者都是接口;(废话)
2、两者都可用来编写多线程程序;
3、两者都需要调用Thread.start()启动线程;

不同点
1、两者最大的不同点是:实现Callable接口的任务线程能返回执行结果;而实现Runnable接口的任务线程不能返回结果;
2、Callable接口的call()方法允许抛出异常;而Runnable接口的run()方法的异常只能在内部消化,不能继续上抛;

Runnable.java

@FunctionalInterface
public interface Runnable {
   /**
    * 被线程执行,没有返回值也无法抛出异常
    */
    public abstract void run();
}

Callable.java

@FunctionalInterface
public interface Callable<V> {
    /**
     * 计算结果,或在无法这样做时抛出异常。
     * @return 计算得出的结果
     * @throws 如果无法计算结果,则抛出异常
     */
    V call() throws Exception;
}
3.21.3. 执行 execute()方法和 submit()方法的区别是什么呢?
  1. execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;
  2. submit()方法用于提交需要返回值的任务。线程池会返回一个 Future 类型的对象,通过这个 Future 对象可以判断任务是否执行成功,并且可以通过 Futureget()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用 get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。

我们以**AbstractExecutorService**接口中的一个 submit 方法为例子来看看源代码:

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }

上面方法调用的 newTaskFor 方法返回了一个 FutureTask 对象。

    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

我们再来看看execute()方法:

    public void execute(Runnable command) {
      ...
    }
3.21.4. 如何创建线程池

《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下:

  • FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。

方式一:通过构造方法实现
JAVA基础+集合+多线程+JVM_第8张图片
方式二:通过 Executor 框架的工具类 Executors 来实现
我们可以创建三种类型的 ThreadPoolExecutor:

  • FixedThreadPool : 该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
  • SingleThreadExecutor: 方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
  • CachedThreadPool: 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。

对应 Executors 工具类中的方法如图所示:
JAVA基础+集合+多线程+JVM_第9张图片

3.21.5. ThreadPoolExecutor 类分析

ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么),这里就不贴代码讲了,比较简单。

    /**
     * 用给定的初始参数创建一个新的ThreadPoolExecutor。
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

下面这些对创建 非常重要,在后面使用线程池的过程中你一定会用到!所以,务必拿着小本本记清楚。

3.21.5.1. ThreadPoolExecutor构造函数重要参数分析

ThreadPoolExecutor 3 个最重要的参数:

  • corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

ThreadPoolExecutor其他常见参数:

  1. keepAliveTime:当线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
  2. unit : keepAliveTime 参数的时间单位。
  3. threadFactory :executor 创建新线程的时候会用到。
  4. handler :饱和策略。关于饱和策略下面单独介绍一下。
3.21.5.2. ThreadPoolExecutor 饱和策略

ThreadPoolExecutor 饱和策略定义:

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任时,ThreadPoolTaskExecutor 定义一些策略:

  • ThreadPoolExecutor.AbortPolicy:策略下,直接丢弃任务,并抛出RejectedExecutionException异常。
  • ThreadPoolExecutor.CallerRunsPolicy:调用执行自己的线程运行任务。您不会任务请求。但是这种策略会降低对于新任务提交速度,影响程序的整体性能。另外,这个策略喜欢增加队列容量。如果您的应用程序可以承受此延迟并且你不能任务丢弃任何一个任务请求的话,你可以选择这个策略。
  • ThreadPoolExecutor.DiscardPolicy 不处理新任务,直接丢弃掉。
  • ThreadPoolExecutor.DiscardOldestPolicy 此策略将丢弃最早的未处理的任务请求。

举个例子: Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略的话来配置线程池的时候默认使用的是 ThreadPoolExecutor.AbortPolicy。在默认情况下,ThreadPoolExecutor 将抛出 RejectedExecutionException 来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。 对于可伸缩的应用程序,建议使用 ThreadPoolExecutor.CallerRunsPolicy。当最大池被填满时,此策略为我们提供可伸缩队列。(这个直接查看 ThreadPoolExecutor 的构造函数源码就可以看出,比较简单的原因,这里就不贴代码了)

3.21.6. 线程池原理分析

承接 4.6 节,我们通过代码输出结果可以看出:线程池每次会同时执行 5 个任务,这 5 个任务执行完之后,剩余的 5 个任务才会被执行。 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会)

现在,我们就分析上面的输出内容来简单分析一下线程池原理。

**为了搞懂线程池的原理,我们需要首先分析一下 execute方法。**在 4.6 节中的 Demo 中我们使用 executor.execute(worker)来提交一个任务到线程池中去,这个方法非常重要,下面我们来看看它的源码:

   // 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
   private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    private static int workerCountOf(int c) {
        return c & CAPACITY;
    }

    private final BlockingQueue<Runnable> workQueue;

    public void execute(Runnable command) {
        // 如果任务为null,则抛出异常。
        if (command == null)
            throw new NullPointerException();
        // ctl 中保存的线程池当前的一些状态信息
        int c = ctl.get();

        //  下面会涉及到 3 步 操作
        // 1.首先判断当前线程池中之行的任务数量是否小于 corePoolSize
        // 如果小于的话,通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 2.如果当前之行的任务数量大于等于 corePoolSize 的时候就会走到这里
        // 通过 isRunning 方法判断线程池状态,线程池处于 RUNNING 状态才会被并且队列可以加入任务,该任务才会被加入进去
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 再次获取线程池状态,如果线程池状态不是 RUNNING 状态就需要从任务队列中移除任务,并尝试判断线程是否全部执行完毕。同时执行拒绝策略。
            if (!isRunning(recheck) && remove(command))
                reject(command);
                // 如果当前线程池为空就新创建一个线程并执行。
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //3. 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
        //如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
        else if (!addWorker(command, false))
            reject(command);
    }

通过下图可以更好的对上面这 3 步做一个展示,下图是我为了省事直接从网上找到,原地址不明。

图解线程池实现原理

现在,让我们在回到 4.6 节我们写的 Demo, 现在应该是不是很容易就可以搞懂它的原理了呢?

没搞懂的话,也没关系,可以看看我的分析:

我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务之行完成后,才会之行剩下的 5 个任务。

3.22. 介绍一下 Atomic 原子类

所谓原子类说简单点就是具有原子/原子操作特征的类。

并发包 java.util.concurrent 的原子类都存放在java.util.concurrent.atomic下,如下图所示。

JAVA基础+集合+多线程+JVM_第10张图片

3.23. JUC 包中的原子类是哪 4 类?

基本类型

使用原子的方式更新基本类型

  • AtomicInteger:整形原子类
  • AtomicLong:长整型原子类
  • AtomicBoolean:布尔型原子类

数组类型

使用原子的方式更新数组里的某个元素

  • AtomicIntegerArray:整形数组原子类
  • AtomicLongArray:长整形数组原子类
  • AtomicReferenceArray:引用类型数组原子类

引用类型

  • AtomicReference:引用类型原子类
  • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。
  • AtomicMarkableReference :原子更新带有标记位的引用类型

对象的属性修改类型

  • AtomicIntegerFieldUpdater:原子更新整形字段的更新器
  • AtomicLongFieldUpdater:原子更新长整形字段的更新器
  • AtomicReferenceFieldUpdater:原子更新引用类型字段的更新器

3.24. AQS 了解么?

AQS 的全称为(AbstractQueuedSynchronizer)抽象队列同步器。AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器。

AQS 原理概览

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。

看个 AQS(AbstractQueuedSynchronizer)原理图:

JAVA基础+集合+多线程+JVM_第11张图片

AQS 使用一个 int 成员变量来表示同步状态,通过内置的 FIFO 队列来完成获取资源线程的排队工作。AQS 使用 CAS 对该同步状态进行原子操作实现对其值的修改。

private volatile int state;//共享变量,使用volatile修饰保证线程可见性

状态信息通过 protected 类型的 getState,setState,compareAndSetState 进行操作

//返回同步状态的当前值
protected final int getState() {
        return state;
}
 // 设置同步状态的值
protected final void setState(int newState) {
        state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
2.3.25.2. AQS 对资源的共享方式

AQS 定义两种资源共享方式

  • Exclusive(独占):只有一个线程能执行,如 ReentrantLock。又可分为公平锁和非公平锁:
    • 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
    • 非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的
  • Share(共享):多个线程可同时执行,如CountDownLatchSemaphoreCountDownLatchCyclicBarrierReadWriteLock 我们都会在后面讲到。

ReentrantReadWriteLock 可以看成是组合式,因为 ReentrantReadWriteLock 也就是读写锁允许多个线程同时对某一资源进行读。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS 已经在顶层实现好了。

2.3.25.3. AQS 底层使用了模板方法模式

同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):

  1. 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源 state 的获取和释放)
  2. 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。

这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用。

AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:

isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。

默认情况下,每个方法都抛出 UnsupportedOperationException。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。

以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。

再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后countDown() 一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 await() 函数返回,继续后余动作。

一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryReleasetryAcquireShared-tryReleaseShared中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock

推荐两篇 AQS 原理和相关源码分析的文章:

  • http://www.cnblogs.com/waterystone/p/4920797.html
  • https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html

3.26. AQS 组件总结

  • Semaphore(信号量)-允许多个线程同时访问: synchronizedReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。
  • CountDownLatch(倒计时器): CountDownLatch 是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。
  • CyclicBarrier(循环栅栏): CyclicBarrierCountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier 默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用 await() 方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。

3.27. 用过 CountDownLatch 么?什么场景下用的?

CountDownLatch 的作用就是 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。之前在项目中,有一个使用多线程读取多个文件处理的场景,我用到了 CountDownLatch 。具体场景是下面这样的:

我们要读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理。

为此我们定义了一个线程池和 count 为 6 的CountDownLatch对象 。使用线程池处理读取任务,每一个线程处理完之后就将 count-1,调用CountDownLatch对象的 await()方法,直到所有文件读取完之后,才会接着执行后面的逻辑。

伪代码是下面这样的:

public class CountDownLatchExample1 {
  // 处理文件的数量
  private static final int threadCount = 6;

  public static void main(String[] args) throws InterruptedException {
    // 创建一个具有固定线程数量的线程池对象(推荐使用构造方法创建)
    ExecutorService threadPool = Executors.newFixedThreadPool(10);
    final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
    for (int i = 0; i < threadCount; i++) {
      final int threadnum = i;
      threadPool.execute(() -> {
        try {
          //处理文件的业务操作
          ......
        } catch (InterruptedException e) {
          e.printStackTrace();
        } finally {
          //表示一个文件已经被完成
          countDownLatch.countDown();
        }

      });
    }
    countDownLatch.await();
    threadPool.shutdown();
    System.out.println("finish");
  }

}

有没有可以改进的地方呢?

可以使用 CompletableFuture 类来改进!Java8 的 CompletableFuture 提供了很多对多线程友好的方法,使用它可以很方便地为我们编写多线程程序,什么异步、串行、并行或者等待所有线程执行完任务什么的都非常方便。

CompletableFuture<Void> task1 =
  CompletableFuture.supplyAsync(()->{
    //自定义业务操作
  });
......
CompletableFuture<Void> task6 =
  CompletableFuture.supplyAsync(()->{
    //自定义业务操作
  });
......
 CompletableFuture<Void> headerFuture=CompletableFuture.allOf(task1,.....,task6);

  try {
    headerFuture.join();
  } catch (Exception ex) {
    ......
  }
System.out.println("all done. ");

上面的代码还可以接续优化,当任务过多的时候,把每一个 task 都列出来不太现实,可以考虑通过循环来添加任务。

//文件夹位置
List<String> filePaths = Arrays.asList(...)
// 异步处理所有文件
List<CompletableFuture<String>> fileFutures = filePaths.stream()
        .map(filePath -> doSomeThing(filePath))
        .collect(Collectors.toList());
// 将他们合并起来
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
        fileFutures.toArray(new CompletableFuture[fileFutures.size()])
);

4. JVM

4.1. 介绍下 Java 内存区域(运行时数据区)

Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。JDK. 1.8 和之前的版本略有不同,下面会介绍到。

JDK 1.8 之前:

JAVA基础+集合+多线程+JVM_第12张图片

JDK 1.8 :

JAVA基础+集合+多线程+JVM_第13张图片

线程私有的:

  • 程序计数器
  • 虚拟机栈
  • 本地方法栈

线程共享的:

  • 方法区
  • 直接内存 (非运行时数据区的一部分)
4.1.1. 程序计数器

程序计数器是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。

另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

从上面的介绍中我们知道程序计数器主要有两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

注意:程序计数器是唯一一个不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。

4.1.2. Java 虚拟机栈

描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的。

Java 内存可以粗糙的区分为堆内存(Heap)和栈内存 (Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。 实际上,Java 虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表【主要存放了编译器可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用】、操作数栈、动态链接、方法出口信息)

Java 虚拟机栈会出现两种错误:StackOverFlowErrorOutOfMemoryError

  • StackOverFlowError 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出 StackOverFlowError 错误。
  • OutOfMemoryError 若 Java 虚拟机堆中没有空闲内存,并且垃圾回收器也无法提供更多内存的话。就会抛出 OutOfMemoryError 错误。

Java 虚拟机栈也是线程私有的,每个线程都有各自的 Java 虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。

扩展:那么方法/函数如何调用?

Java 栈可用类比数据结构中栈,Java 栈中保存的主要内容是栈帧,每一次函数调用都会有一个对应的栈帧被压入 Java 栈,每一个函数调用结束后,都会有一个栈帧被弹出。

Java 方法有两种返回方式:

  1. return 语句。
  2. 抛出异常。

不管哪种返回方式都会导致栈帧被弹出。

4.1.3. 本地方法栈

和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。

本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。

方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowErrorOutOfMemoryError 两种错误。

4.1.4. 堆

Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。

Java世界中“几乎”所有的对象都在堆中分配,但是,随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。从jdk 1.7开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。

从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

在 JDK 7 版本及JDK 7 版本之前,堆内存被通常被分为下面三部分:

  1. 新生代内存(Young Generation)
  2. 老生代(Old Generation)
  3. 永生代(Permanent Generation)

JAVA基础+集合+多线程+JVM_第14张图片

JDK 8 版本之后方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

JAVA基础+集合+多线程+JVM_第15张图片

上图所示的 Eden 区、两个 Survivor 区都属于新生代(为了区分,这两个 Survivor 区域按照顺序被命名为 from 和 to),中间一层属于老年代。

大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

修正(issue552):“Hotspot遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了survivor区的一半时,取这个年龄和MaxTenuringThreshold中更小的一个值,作为新的晋升年龄阈值”。

动态年龄计算的代码如下

uint ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
	//survivor_capacity是survivor空间的大小
size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
size_t total = 0;
uint age = 1;
while (age < table_size) {
total += sizes[age];//sizes数组是每个年龄段对象大小
if (total > desired_survivor_size) break;
age++;
}
uint result = age < MaxTenuringThreshold ? age : MaxTenuringThreshold;
	...
}

堆这里最容易出现的就是 OutOfMemoryError 错误,并且出现这种错误之后的表现形式还会有几种,比如:

  1. OutOfMemoryError: GC Overhead Limit Exceeded : 当JVM花太多时间执行垃圾回收并且只能回收很少的堆空间时,就会发生此错误。
  2. java.lang.OutOfMemoryError: Java heap space :假如在创建新的对象时, 堆内存中的空间不足以存放新创建的对象, 就会引发java.lang.OutOfMemoryError: Java heap space 错误。(和本机物理内存无关,和你配置的内存大小有关!)
4.1.5. 方法区

它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。JDK 1.8 的时候,方法区被彻底移除了,取而代之是元空间,元空间使用的是直接内存。

方法区也被称为永久代。很多人都会分不清方法区和永久代的关系,为此我也查阅了文献。

4.1.5.1. 方法区和永久代的关系

《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,并没有规定如何去实现它。那么,在不同的 JVM 上方法区的实现肯定是不同的了。 方法区和永久代的关系很像 Java 中接口和类的关系,类实现了接口,而永久代就是 HotSpot 虚拟机对虚拟机规范中方法区的一种实现方式。 也就是说,永久代是 HotSpot 的概念,方法区是 Java 虚拟机规范中的定义,是一种规范,而永久代是一种实现,一个是标准一个是实现,其他的虚拟机实现并没有永久代这一说法。

4.1.5.2. 常用参数

JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小

-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。

JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

下面是一些常用参数:

-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小

与永久代很大的不同就是,如果不指定大小的话,随着更多类的创建,虚拟机会耗尽所有可用的系统内存。

4.1.5.3. 为什么要将永久代 (PermGen) 替换为元空间 (MetaSpace) 呢?
  1. 整个永久代有一个 JVM 本身设置固定大小上限,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,虽然元空间仍旧可能溢出,但是比原来出现的几率会更小。

当你元空间溢出时会得到如下错误: java.lang.OutOfMemoryError: MetaSpace

你可以使用 -XX:MaxMetaspaceSize 标志设置最大元空间大小,默认值为 unlimited,这意味着它只受系统内存的限制。-XX:MetaspaceSize 调整标志定义元空间的初始大小如果未指定此标志,则 Metaspace 将根据运行时的应用程序需求动态地重新调整大小。

  1. 元空间里面存放的是类的元数据,这样加载多少类的元数据就不由 MaxPermSize 控制了, 而由系统的实际可用空间来控制,这样能加载的类就更多了。

  2. 在 JDK8,合并 HotSpot 和 JRockit 的代码时, JRockit 从来没有一个叫永久代的东西, 合并之后就没有必要额外的设置这么一个永久代的地方了。

4.1.6. 运行时常量池

运行时常量池是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有常量池表(用于存放编译期生成的各种字面量和符号引用)

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 错误。

JDK1.7 及之后版本的 JVM 已经将运行时常量池从方法区中移了出来,在 Java 堆(Heap)中开辟了一块区域存放运行时常量池。

修正(issue747,reference):

  1. JDK1.7之前运行时常量池逻辑包含字符串常量池存放在方法区, 此时hotspot虚拟机对方法区的实现为永久代
  2. JDK1.7 字符串常量池被从方法区拿到了堆中, 这里没有提到运行时常量池,也就是说字符串常量池被单独拿到堆,运行时常量池剩下的东西还在方法区, 也就是hotspot中的永久代
  3. JDK1.8 hotspot移除了永久代用元空间(Metaspace)取而代之, 这时候字符串常量池还在堆, 运行时常量池还在方法区, 只不过方法区的实现从永久代变成了元空间(Metaspace)

相关问题:JVM 常量池中存储的是对象还是引用呢?: https://www.zhihu.com/question/57109429/answer/151717241 by RednaxelaFX

4.1.7. 直接内存

直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。

JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel)缓存区(Buffer) 的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据

本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。

4.2. 说一下Java对象的创建过程

下图便是 Java 对象的创建过程,我建议最好是能默写出来,并且要掌握每一步在做什么。

JAVA基础+集合+多线程+JVM_第16张图片

4.2.1. Step1:类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

4.2.2. Step2:分配内存

类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式“指针碰撞”“空闲列表” 两种,选择哪种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定

内存分配的两种方式:(补充内容,需要掌握)

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的

JAVA基础+集合+多线程+JVM_第17张图片

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
  • TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配
4.2.3. Step3:初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

4.2.4. Step4:设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

4.2.5. Step5:执行 init 方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始, 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

4.3. 对象的访问定位有哪两种方式?

建立对象就是为了使用对象,我们的Java程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式有虚拟机实现而定,目前主流的访问方式有①使用句柄②直接指针两种:

  1. 句柄: 如果使用句柄的话,那么Java堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;

JAVA基础+集合+多线程+JVM_第18张图片

  1. 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference 中存储的直接就是对象的地址。

JAVA基础+集合+多线程+JVM_第19张图片

这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。

4.4. 简单聊聊 JVM 内存分配与回收

Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 内存中对象的分配与回收。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

堆空间的基本结构:

JAVA基础+集合+多线程+JVM_第20张图片

上图所示的 Eden 区、From Survivor0(“From”) 区、To Survivor1(“To”) 区都属于新生代,Old Memory 区属于老年代。

大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

修正(issue552):“Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了 survivor 区的一半时,取这个年龄和 MaxTenuringThreshold 中更小的一个值,作为新的晋升年龄阈值”。

动态年龄计算的代码如下

uint ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
	//survivor_capacity是survivor空间的大小
size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
size_t total = 0;
uint age = 1;
while (age < table_size) {
total += sizes[age];//sizes数组是每个年龄段对象大小
if (total > desired_survivor_size) break;
age++;
}
uint result = age < MaxTenuringThreshold ? age : MaxTenuringThreshold;
	...
}

经过这次 GC 后,Eden 区和"From"区已经被清空。这个时候,“From"和"To"会交换他们的角色,也就是新的"To"就是上次 GC 前的“From”,新的"From"就是上次 GC 前的"To”。不管怎样,都会保证名为 To 的 Survivor 区域是空的。Minor GC 会一直重复这样的过程,直到“To”区被填满,"To"区被填满之后,会将所有对象移动到老年代中。

4.5. 说一下堆内存中对象的分配的基本策略

JAVA基础+集合+多线程+JVM_第21张图片

4.5.1. 对象优先在 eden 区分配

目前主流的垃圾收集器都会采用分代回收算法,因此需要将堆内存分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

大多数情况下,对象在新生代中 eden 区分配。当 eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC.下面我们来进行实际测试以下。

测试:

public class GCTest {

	public static void main(String[] args) {
		byte[] allocation1, allocation2;
		allocation1 = new byte[30900*1024];
		//allocation2 = new byte[900*1024];
	}
}

通过以下方式运行:
JAVA基础+集合+多线程+JVM_第22张图片

添加的参数:-XX:+PrintGCDetails
JAVA基础+集合+多线程+JVM_第23张图片

运行结果 (红色字体描述有误,应该是对应于 JDK1.7 的永久代):

JAVA基础+集合+多线程+JVM_第24张图片

从上图我们可以看出 eden 区内存几乎已经被分配完全(即使程序什么也不做,新生代也会使用 2000 多 k 内存)。假如我们再为 allocation2 分配内存会出现什么情况呢?

allocation2 = new byte[900*1024];

JAVA基础+集合+多线程+JVM_第25张图片

简单解释一下为什么会出现这种情况: 因为给 allocation2 分配内存的时候 eden 区内存几乎已经被分配完了,我们刚刚讲了当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC.GC 期间虚拟机又发现 allocation1 无法存入 Survivor 空间,所以只好通过 分配担保机制 把新生代的对象提前转移到老年代中去,老年代上的空间足够存放 allocation1,所以不会出现 Full GC。执行 Minor GC 后,后面分配的对象如果能够存在 eden 区的话,还是会在 eden 区分配内存。可以执行如下代码验证:

public class GCTest {

	public static void main(String[] args) {
		byte[] allocation1, allocation2,allocation3,allocation4,allocation5;
		allocation1 = new byte[32000*1024];
		allocation2 = new byte[1000*1024];
		allocation3 = new byte[1000*1024];
		allocation4 = new byte[1000*1024];
		allocation5 = new byte[1000*1024];
	}
}

4.5.2. 大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。

为什么要这样呢?

为了避免为大对象分配内存时由于分配担保机制带来的复制而降低效率。

4.5.3. 长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

4.5.4. 动态对象年龄判定

大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

修正(issue552):“Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了 survivor 区的一半时,取这个年龄和 MaxTenuringThreshold 中更小的一个值,作为新的晋升年龄阈值”。

动态年龄计算的代码如下

uint ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
	//survivor_capacity是survivor空间的大小
size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
size_t total = 0;
uint age = 1;
while (age < table_size) {
total += sizes[age];//sizes数组是每个年龄段对象大小
if (total > desired_survivor_size) break;
age++;
}
uint result = age < MaxTenuringThreshold ? age : MaxTenuringThreshold;
	...
}

额外补充说明(issue672):关于默认的晋升年龄是 15,这个说法的来源大部分都是《深入理解 Java 虚拟机》这本书。
如果你去 Oracle 的官网阅读相关的虚拟机参数,你会发现-XX:MaxTenuringThreshold=threshold这里有个说明

Sets the maximum tenuring threshold for use in adaptive GC sizing. The largest value is 15. The default value is 15 for the parallel (throughput) collector, and 6 for the CMS collector.默认晋升年龄并不都是 15,这个是要区分垃圾收集器的,CMS 就是 6.

4.5.5. 主要进行 gc 的区域

周志明先生在《深入理解 Java 虚拟机》第二版中 P92 如是写道:

“老年代 GC(Major GC/Full GC),指发生在老年代的 GC……”

上面的说法已经在《深入理解 Java 虚拟机》第三版中被改正过来了。感谢 R 大的回答:

JAVA基础+集合+多线程+JVM_第26张图片

总结:

针对 HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种:

部分收集 (Partial GC):

  • 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
  • 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
  • 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。

整堆收集 (Full GC):收集整个 Java 堆和方法区。

4.6. 如何判断对象是否死亡?(两种方法)

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断哪些对象已经死亡(即不能再被任何途径使用的对象)。

4.6.1. 引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加1;当引用失效,计数器就减1;任何时候计数器为0的对象就是不可能再被使用的。

2.4.6.2. 可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。

GC Roots包括:虚拟机栈中引用的对象、本地方法栈中JNI引用的对象、方法区中类静态属性引用的对象、方法区中常量引用的对象等

可达性分析算法

4.7. 简单的介绍一下强引用,软引用,弱引用,虚引用

无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。

JDK1.2之前,Java中引用的定义很传统:如果reference类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。

JDK1.2以后,Java对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)

4.7.1. 强引用(StrongReference)

以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

4.7.2. 软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA虚拟机就会把这个软引用加入到与之关联的引用队列中。

4.7.3. 弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。

4.虚引用(PhantomReference)

"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。

虚引用主要用来跟踪对象被垃圾回收的活动

虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃 圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速JVM对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生

4.8. 如何判断一个常量是废弃常量?

运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢?

假如在常量池中存在字符串 “abc”,如果当前没有任何String对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,“abc” 就会被系统清理出常量池。

4.9. 如何判断一个类是无用的类?

方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢?

判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面 3 个条件才能算是 “无用的类”

  • 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
  • 加载该类的 ClassLoader 已经被回收。
  • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。

4.10. 垃圾收集有哪些算法,各自的特点?

4.10.1. 标记-清除算法

该算法分为“标记”和“清除”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:

  1. 效率问题
  2. 空间问题(标记清除后会产生大量不连续的碎片)
公众号
4.10.2. 标记-整理算法

根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

JAVA基础+集合+多线程+JVM_第27张图片

4.10.3. 复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

公众号
4.10.4. 分代收集算法
Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。在 Java 中,堆被划分成两个不同的区域:年轻代 ( Young )、老年代 ( Tenured)、永久代(Permanent)。

年轻代:新生成的对象优先存储在年轻代 ( Young );
老年代:在新生代中经历了多次(具体看虚拟机配置的阀值)GC后仍然存活下来的对象会进入老年代中;
永久代:永久代存储类信息、常量、静态变量、即时编译器编译后的代码等数据,一般而言不会进行垃圾回收。

年轻代 ( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。这样划分的目的是为了使 JVM 能够更好的管理堆内存中的对象,包括内存的分配以及回收。

当前商业虚拟机的垃圾收集都采用分代收集算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。
在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成。
而老年代中因为对象存活率高、没有额外空间对他进行分配担保,就必须使用“标记-清理”或者“标记-整理”算法来进行回收。

步骤:
	1、当系统创建一个对象的时候,总是在Eden区操作,当这个区满了,那么就会触发一次YoungGC,这时候将Eden中存活的对象会复制到from区。
这里写图片描述
2、清理整个Eden区后,可以继续创建新的对象。当Eden区再次被用完,就再触发一次YoungGC
这次触发YoungGC后,会将Eden区与From区还在被使用的对象复制到To区。        
img
3、再下一次YoungGC的时候,则是将Eden区与To区中的还在被使用的对象复制到From区。
img
	4、如上这样,会有很多对象会被复制很多次(每复制一次,对象的年龄就+1),默认情况下,当对象被复制了15次(这个次数可以通过:-XX:MaxTenuringThreshold来配置),就会进入年老代了
	5、当年老代满了或者存放不下将要进入年老代的存活对象的时候,就会发生一次Full GC(这个是我们最需要减少的,因为耗时很严重

4.11. HotSpot 为什么要分为新生代和老年代?

主要是为了提升 GC 效率。上面提到的分代收集算法已经很好的解释了这个问题。

4.12. 常见的垃圾回收器有那些?

img

图中展示了7种不同分代的收集器:
	SerialParNewParallel ScavengeSerial OldParallel Old、CMS、G1;

而它们所处区域,则表明其是属于新生代收集器还是老年代收集器:
新生代收集器:SerialParNewParallel Scavenge;
老年代收集器:Serial OldParallel Old、CMS;
整堆收集器:G1;
https://blog.csdn.net/qq_41723615/article/details/104380000    
1Serial(串行)垃圾收集器是最基本、发展历史最悠久的收集器;

特点:针对新生代;采用复制算法;单线程收集;进行垃圾收集时,必须暂停所有工作线程,直到完成;    
2ParNew垃圾收集器是Serial收集器的多线程版本
特点:除了多线程外,其余的行为、特点和Serial收集器一样;进行垃圾收集时,必须暂停所有工作线程,直到完成;
3Parallel Scavenge收集器因为与吞吐量关系密切,也称为吞吐量收集器。
特点:有一些特点与ParNew收集器相似(新生代收集器、采用复制算法、多线程收集)
而Parallel Scavenge收集器更关注吞吐量,尽可能地缩短垃圾收集时用户线程的停顿时间
4Serial OldSerial收集器的老年代版本
	特点:针对老年代;采用"标记-整理"算法;单线程收集;  
5Parallel Old垃圾收集器是Parallel Scavenge收集器的老年代版本;
特点:针对老年代;采用"标记-整理"算法;多线程收集;
6、CMS收集器:并发标记清理收集器是一种以获取最短回收停顿时间为目标的收集器。

特点:针对老年代;基于"标记-清除"算法;以获取最短回收停顿时间为目标;
优点:并发收集、低停顿;
缺点:对 CPU 资源敏感(虽然不会导致用户线程停顿,但是会因为占用了一部分线程使应用程序变慢,总吞吐量会降低)、无法处理浮动垃圾、它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。

步骤:
1、初始标记:标记一下GC Roots能直接关联到的对象,速度很快;但需要"Stop The World"2、并发标记:其实就是从GC Roots开始找到"它能引用的所有其它对象的过程";耗时较长,但与用户线程一起运行;并不能保证可以标记出所有的存活对象;
3、重新标记:修正并发标记期间因用户程序继续运作而"导致标记产生变动"的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记时间短,需要"Stop The World"4、并发清除:GC 线程开始对为标记的区域做清扫,同时与用户线程一起工作。

浮动垃圾:CMS在并发清理阶段线程还在运行,伴随着程序的运行自然也会产生新的垃圾,这一部分垃圾产生在标记过程之后,CMS无法再当次过程中处理,所以只有等到下次gc时候在清理掉,这一部分垃圾就称作“浮动垃圾” 。
Stop-the-world:除了GC所需的线程外,其他线程都将停止工作,中断了的线程直到GC任务结束才继续它们的任务
7、G1(Garbage-First)是一款面向服务端应用的垃圾收集器
特点:
(A)并行与并发:能充分利用多CPU、多核环境下的硬件优势;可以并行来缩短停顿时间;也可以并发让垃圾收集与用户程序同时进行;
(B)分代收集:能独立管理整个GC堆,而不需要与其他收集器搭配;能够采用不同方式处理不同时期的对象;
(C)空间整合:与CMS的“标记--清理”算法不同,G1从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
(D)可预测的停顿:这是G1相对于CMS的另一个大优势,降低停顿时间是G1和CMS共同的关注点,但"G1除了追求低停顿外,还能建立可预测的停顿时间模型",能让使用者明确指定在一个长度为M毫秒的时间片段内。

步骤:
初始标记:仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS的值,让下一个阶段用户程序并发运行时,能在正确可用的 Region中创建新对象,这一阶段需要需要"Stop The World",但是耗时很短。

并发标记:其实就是从GC Roots开始找到"它能引用的所有其它对象的过程",这阶段时耗时较长,但可与用户程序并发执行。

最终标记:为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remenbered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这一阶段要"Stop The World",且线程停顿时间比初始标记稍长,但远比并发标记短;采用多线程并行执行来提升效率。

筛选回收:首先排序各个Region的回收价值和成本;然后根据"用户期望的GC停顿时间来制定回收计划";最后按计划回收一些价值高的Region中垃圾对象;需要"Stop The World"

4.13、常用的 JVM 调优的参数都有哪些?

堆配置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为4表示年轻代和年老代比值为14,年轻代占整个年轻代年老代和的1/5
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如3表示Eden3 Survivor2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
垃圾回收统计信息
-XX:+PrintGC :开启打印 gc 信息;
-XX:+PrintGCDetails 打印 gc 详细信息。
-XX:+PrintGCTimeStamps 打印 gc 操作的时间戳   
垃圾收集器
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器 

4.14请简单描述一下类的加载过程

如下图所示,JVM类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程
img
1、加载阶段:
	是根据一个类的全限定名来读取此类的二进制字节流到JVM中,然后转换为一个与目标类对应的java.lang.Class对象实例。
2、验证阶段:
目的是为了确保Class文件字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
主要包括:文件格式验证、元数据验证、字节码验证、符号引用验证
	    文件格式验证 :"验证字节流是否符合Class文件的规范",如主次版本号是否在当前虚拟机范围内,常量池中的常量是否有不被支持的类型等等;
		元数据验证 :"对字节流描述的信息进行语义分析",如这个类是否有父类,是否继承了不被继承的类等等;
		字节码验证 :"通过验证数据流和控制流,确定程序语义是否正确",主要针对方法体的验证。如:方法中的类型转换是否正确,跳转指令是否正确等等;
		符号引用验证 :"为了确保解析动作能正确执行"
3、准备阶段:
	是"为类的静态变量分配内存并将其初始化为默认值",这些内存都将在方法区中进行分配。
//在准备阶段value初始值为0,在初始化阶段才会变为123
public static int value = 123  
//注意下面是常量, 在准备阶段之后,number 的值将是 3,而不是 0
public static final int number = 3;
4、解析阶段:
	是指虚拟机完成"将常量池中的符号引用替换为直接引用的过程"。
	符号引用就是class文件中的:CONSTANT_Class_infoCONSTANT_Field_infoCONSTANT_Method_info等类型的常量,引用的目标并不一定要已经加载到内存中。

	直接引用可以是指向目标的指针,相对偏移量或是一个能间接定位到目标的句柄。如果有了直接引用,那引用的目标必定已经在内存中存在。
5、初始化阶段:
	初始化阶段是类加载最后一个阶段,到了初始阶段,才开始真正执行类中定义的Java程序代码。
	包括"静态字段赋值的动作",以及"执行类定义中的静态初始化块内的逻辑",编译器在编译阶段就会把这部分逻辑整理好,父类型的初始化逻辑优先于当前类型的逻辑。

4.15类加载器

	在类的加载过程中,类加载器的任务是根据一个类的全限定名来读取此类的二进制字节流到JVM中,然后转换为一个与目标类对应的java.lang.Class对象实例。
在虚拟机提供了3种类加载器,启动(Bootstrap)类加载器、扩展(Extension)类加载器、系统(System)类加载器   
1、启动(Bootstrap)类加载器
 是嵌在JVM内核中的加载器,该加载器是用C++语言写的,主要负载加载JAVA_HOME/lib下的类库,启动类加载器无法被应用程序直接使用。
2、扩展(Extension)类加载器    
	该加载器器是用JAVA编写,它负责加载<JAVA_HOME>/lib/ext路径下或者由系统变量java.ext.dir指定位路径中的类库。开发者可以直接使用标准扩展类加载器。
3、系统(System)类加载器 
   它负责加载系统类路径java -classpath或 java.class.path 指定路径下的类库,也就是我们经常用到的classpath路径,开发者可以直接使用系统类加载器
JVM通过双亲委派模型进行类的加载,当然我们也可以通过继承java.lang.ClassLoader实现自定义的类加载器。
img

4.16、双亲委派模式

	双亲委派模式要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器,请注意双亲委派模式中的父子关系并非通常所说的类继承关系,而是采用组合关系来复用父类加载器的相关代码。
工作原理
	"如果一个类加载器收到了类加载请求,它并不会自己先去加载",而是把这个请求委托给父类的加载器去执行,如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,"最终请求将到达顶层的启动类加载器",如果父类加载器可以完成类加载任务,就成功返回,倘"若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载",这就是双亲委派模式,即每个儿子都很懒,每次有活就丢给父亲去干,直到父亲说这件事我也干不了时,儿子自己想办法去完成,这不就是传说中的实力坑爹啊?那么采用这种模式有啥用呢? 
优势:
	1Java类随着它的类加载器一起具备了一种带有优先级的层次关系,通过这种层级关可以"避免类的重复加载",当父亲已经加载了该类时,就没有必要子ClassLoader再加载一次。
	2"其次是考虑到安全因素,java核心api中定义类型不会被随意替换",假设通过网络传递一个名为java.lang.Integer的类,通过双亲委托模式传递到启动类加载器,而启动类加载器在核心Java API发现这个名字的类,发现该类已被加载,"并不会重新加载网络传递的过来的java.lang.Integer",这样便可以防止核心API库被随意篡改。

注:部分内容引自于javaduide

你可能感兴趣的:(JAVA,java)