武忠祥老师每日一题||定积分基础训练(三)

常用的基本不等式:
sin ⁡ x < x <   t a n x , x ∈ ( 0 , π 2 ) \sin xsinx<x< tanx,x(0,2π)
e x ≥ 1 + x , x ∈ ( − ∞ , + ∞ ) e^x\ge1+x,x\in(-\infty,+\infty) ex1+x,x(,+)
x 1 + x ≤ ln ⁡ ( 1 + x ) ≤ x , x ∈ ( 0 , + ∞ ) \frac{x}{1+x}\le \ln(1+x)\le x,x\in(0,+\infty) 1+xxln(1+x)x,x(0,+)


武忠祥老师每日一题||定积分基础训练(三)_第1张图片
本题中的积分区间为 ( 0 , π 4 ) , 有 tan ⁡ x > x 本题中的积分区间为(0,\frac{\pi}{4}),有\tan x>x 本题中的积分区间为(0,4π),tanx>x
故 ∫ 0 π 4 tan ⁡ x x   d x > ∫ 0 π 4 1   d x > ∫ 0 π 4 x tan ⁡ x   d x 故\int _{0}^{\frac{\pi}{4}}\frac{\tan x}{x}\,{\rm d}x>\int_{0}^{\frac{\pi}{4}}1\,{\rm d}x>\int_{0}^{\frac{\pi}{4}}\frac{x}{\tan x}\,{\rm d}x 04πxtanxdx>04π1dx>04πtanxxdx
而 I 2 < ∫ 0 π 4 1   d x = π 4 < 1 而I_{2}<\int_{0}^{\frac{\pi}{4}}1\,{\rm d}x=\frac{\pi}{4}<1 I2<04π1dx=4π<1
此时可以根据排除法选出选项 B 。 此时可以根据排除法选出选项B。 此时可以根据排除法选出选项B


补充 x ∈ ( 0 , π 2 ) , sin ⁡ x < x < tan ⁡ x 的几何图形 补充x\in(0,\frac{\pi}{2}),\sin x补充x(0,2π),sinx<x<tanx的几何图形
武忠祥老师每日一题||定积分基础训练(三)_第2张图片

你可能感兴趣的:(武忠祥老师每日一题,算法,线性代数,概率论)