一般流式计算会与批量计算相比较
流式计算就相当于上图的右侧扶梯,是可以源源不断的产生数据,源源不断的接收数据,没有边界
。
一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。
流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。
应用场景
技术方案选型
可以轻松地将其嵌入任何Java应用程序中,并与用户为其流应用程序所拥有的任何现有打包,部署和操作工具集成。
Kafka Stream
:提供了对存储于 Kafka内
的数据进行流式处理和分析的功能
Kafka Stream的特点如下:
源处理器(Source Processor):源处理器是一个没有任何上游处理器的特殊类型的流处理器。它从一个或多个kafka主题生成输入流。通过消费这些主题的消息并将它们转发到下游处理器。
Sink处理器:sink处理器是一个没有下游流处理器的特殊类型的流处理器。它接收上游流处理器的消息发送到一个指定的Kafka主题
key-value
键值对KStream数据流(data stream),即是一段顺序的,可以无限长,不断更新的数据集。
导入依赖
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-streamsartifactId>
<exclusions>
<exclusion>
<artifactId>connect-jsonartifactId>
<groupId>org.apache.kafkagroupId>
exclusion>
<exclusion>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-clientsartifactId>
exclusion>
exclusions>
dependency>
package com.heima.kafka.sample;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.ValueMapper;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;
/**
* 流式处理
*/
public class KafkaStreamQuickStart {
public static void main(String[] args) {
//kafka的配置信心
Properties prop = new Properties();
prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"streams-quickstart");
//stream 构建器
StreamsBuilder streamsBuilder = new StreamsBuilder();
//流式计算
streamProcessor(streamsBuilder);
//创建kafkaStream对象
KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(),prop);
//开启流式计算
kafkaStreams.start();
}
/**
* 流式计算
* 消息的内容:hello kafka hello itcast
* @param streamsBuilder
*/
private static void streamProcessor(StreamsBuilder streamsBuilder) {
//创建kstream对象,同时指定从那个topic中接收消息
KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
/**
* 处理消息的value
*/
stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
@Override
public Iterable<String> apply(String value) {
return Arrays.asList(value.split(" "));
}
})
//按照value进行聚合处理
.groupBy((key,value)->value)
//时间窗口
.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
//统计单词的个数
.count()
//转换为kStream
.toStream()
.map((key,value)->{
System.out.println("key:"+key+",vlaue:"+value);
return new KeyValue<>(key.key().toString(),value.toString());
})
//发送消息
.to("itcast-topic-out");
}
}
itcast_topic_input
中发送多条消息itcast_topic_input
的数据,进行聚合操作后,将处理结果发送到 itcast_topic_out
itcast_topic_out
结果:
package com.heima.kafka.config;
import lombok.Getter;
import lombok.Setter;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafkaStreams;
import org.springframework.kafka.annotation.KafkaStreamsDefaultConfiguration;
import org.springframework.kafka.config.KafkaStreamsConfiguration;
import java.util.HashMap;
import java.util.Map;
/**
* 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数
*/
@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix="kafka")
public class KafkaStreamConfig {
private static final int MAX_MESSAGE_SIZE = 16* 1024 * 1024;
private String hosts;
private String group;
@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);
props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");
props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");
props.put(StreamsConfig.RETRIES_CONFIG, 10);
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
return new KafkaStreamsConfiguration(props);
}
}
application.yml
kafka:
hosts: 192.168.200.130:9092
group: ${spring.application.name}
package com.heima.kafka.stream;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.ValueMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.time.Duration;
import java.util.Arrays;
@Configuration
@Slf4j
public class KafkaStreamHelloListener {
@Bean
public KStream<String,String> kStream(StreamsBuilder streamsBuilder){
//创建kstream对象,同时指定从那个topic中接收消息
KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
@Override
public Iterable<String> apply(String value) {
return Arrays.asList(value.split(" "));
}
})
//根据value进行聚合分组
.groupBy((key,value)->value)
//聚合计算时间间隔
.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
//求单词的个数
.count()
.toStream()
//处理后的结果转换为string字符串
.map((key,value)->{
System.out.println("key:"+key+",value:"+value);
return new KeyValue<>(key.key().toString(),value.toString());
})
//发送消息
.to("itcast-topic-out");
return stream;
}
}
启动 springboot 项目即可自动监听