求有向图G的转置图GT

有向图G=(V,E)的转置是图GT=(V,ET),其中边∈ET当且仅当∈E,即GT就是G的所有边反向所组成的图。请按照相邻矩阵和邻接表两种表示法写出从G计算GT的有效算法,并确定算法的时间代价。

相邻矩阵

#include 
#define MAX_VALUE 0//当两个点不相连是路径的权为0
#define MAX_NUM 100//最多可存放点的个数
typedef char node_type;
 
typedef struct matrix
{
    node_type vertex[MAX_NUM];//节点信息
    int arcs[MAX_NUM][MAX_NUM];//矩阵
    int vertexs, brim;//节点数,边数
} Graph;
 
bool visit[MAX_NUM]= {false};
void create(Graph *graph);
void printMatrix(Graph *graph);//打印矩阵状态
bool transpose(Graph *,Graph *); //转置函数
void init(Graph *);  //自定义一个初始化图,也可以使用create自定义图
 
int main(void)
{
    Graph graph,graphTrans;
    // create(&graph);  //自定义图
    init(&graph);  //初始化一个图
    printf("初始图的邻接矩阵为:\n");
    printMatrix(&graph);
    transpose(&graph,&graphTrans);
    printf("转置后图的邻接矩阵为:\n");
    printMatrix(&graphTrans);
    return 0;
}


void init(Graph *graph){
    graph->vertexs = 4;
    for (int i = 0; i < graph->vertexs; i++ )//初始化矩阵
        for ( int j = 0; j < graph->vertexs; j++ )
            graph->arcs[i][j] = MAX_VALUE;
    graph->arcs[0][3] = 1;
    graph->arcs[1][0] = 1;
    graph->arcs[1][2] = 1;
    graph->arcs[2][0] = 1;
    graph->arcs[2][1] = 1;
    graph->brim = 5;
} 
 
void create(Graph *graph)
{
    int num;
    char c;
    printf("输入节点个数:\n");
    scanf("%d", &graph->vertexs);
    getchar();//吃掉回车符
    printf("输入节点信息:\n");
    for (int i = 0; i < graph->vertexs; i++ )
        scanf("%c", &graph->vertex[i]);
    getchar();
    for (int i = 0; i < graph->vertexs; i++ )//初始化矩阵
        for ( int j = 0; j < graph->vertexs; j++ )
            graph->arcs[i][j] = MAX_VALUE;
    graph->brim = 0;//初始化边数
    for (int i = 0; i < graph->vertexs; i++ )
    {
        printf("输入与%c节点相邻的节点与权值,输入“.”号键结束\n", graph->vertex[i]);
        for (int j = 0; j < graph->vertexs; j++ )
        {
            scanf("%c", &c);
            if ( c == '.' )
            {
                getchar();
                break;
            }
            scanf("%d", &num);
            for (int k = 0; k < graph->vertexs; k++ )
                if ( graph->vertex[k] == c )
                {
                    graph->arcs[i][k] = num;
                    graph->brim++;
                }
            getchar();
        }
    }
    // graph->brim /= 2;  //对应无向图
}


void printMatrix(Graph *graph)//打印矩阵状态
{
    for ( int i = 0; i < graph->vertexs; i++ )
    {
        for ( int j = 0; j < graph->vertexs; j++ )
            printf("%d ", graph->arcs[i][j]);
        printf("\n");
    }
}

bool transpose(Graph *g, Graph *gt){
    if(g == NULL || gt == NULL){
        return false; 
    }
    gt->vertexs = g->vertexs;
    gt->brim = g->brim;
    for(int i=0;ivertexs;i++){
        for(int j=i+1;jvertexs;j++){
            gt->arcs[i][j] = g->arcs[j][i];
            gt->arcs[j][i] = g->arcs[i][j];
        }
    }
    return true;
}
复制代码

可见两次循环遍历了顶点,算法复杂度为O(n2)

邻接表

#include 
using namespace std;
 
#define  N 4
#define INFINITE 0
//顶点结点结构  
struct Vertex  
{  
    Vertex * next;/*指向下一个顶点*/
    int id;/*节点的标志*/
    Vertex():next(NULL),id(0){}  
};  
 
//图结构
struct Graph
{
    Vertex *Adj[N];//N个顶点及邻接点头指针
    int p[N];//指向遍历树节点的父结点 
    int d[N];/*节点发现时间*/
    int f[N];/*节点结束遍历时间*/
    Graph()
    {  
        for(int i = 0; i < N; i++)  
        {
            Adj[i] = new Vertex;
            d[i] = 0;
            f[i] = 0;
            p[i] = 0;
        }
    }
    ~Graph()  
    {  
        for(int i = 0; i < N; i++)  
            delete Adj[i];  
    }  
};
 
void Print(Graph *g);
void Init(Graph *g);
bool InsertEdge(Graph *g , int start,int end);
bool TransposedMap(Graph *g, Graph *gt);

int main(int argc, char const *argv[])
{
    Graph g;
    Graph transG;
    Init(&g);
    printf("初始的邻接表为\n");
    Print(&g);
    TransposedMap(&g, &transG);
    printf("转置后的邻接表为\n"); 
    Print(&transG);
    return 0;
}
void Init(Graph *g){
    Vertex *temp = new Vertex;
    temp->id = 3;
    g->Adj[0]->next = temp;

    temp = new Vertex;
    temp->id = 0;
    temp->next = new Vertex;
    g->Adj[1]->next = temp;

    temp = temp->next;
    temp->id = 2;

    temp = new Vertex;
    temp->id = 0;
    temp->next = new Vertex;
    g->Adj[2]->next = temp;

    temp = temp->next;
    temp->id = 1;
}
 

void Print(Graph *g){
    for(int i=0;iprintf("%d---->", i);
        Vertex *p = g->Adj[i]->next;
        while(p!=NULL){
            printf(" %d ", p->id);
            p = p->next;
        }
        printf("\n");

    }
    printf("\n");
}

//插入边
bool InsertEdge(Graph *g , int start,int end)
{
    Vertex* v = new Vertex();
    v->id = end;
    Vertex* tmp = g->Adj[start];
    while(tmp->next !=NULL)
    {
        tmp = tmp->next;
    }
    tmp->next =v;
    return true;
}
 
/*图的转置方法*/
bool TransposedMap(Graph *g,Graph *gt)
{
    if((g == NULL) || (gt == NULL))
    {
        return false;
    }
    for(int i=0;iAdj[i]->next;
        while(v!=NULL)
        {
            InsertEdge(gt,v->id,i);
            v = v->next;
        }
    }
    return true;
}
复制代码

可以看出循环了所有的边,算法复杂度为O(E),E为边的数目。

你可能感兴趣的:(求有向图G的转置图GT)