- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- 第一次在CSDN 使用Markdown编辑页,就看到了完美的语法,在此处,我记录一下
撰卢
编辑器笔记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- 基于SSE+Worker+MarkdownIt 实现流式对话
小周同学:
vue.jsnodejs
1.SSE实现流式对话1.1什么是SSE?Server-SentEvents(SSE)是一种基于HTTP的服务器推送技术,允许服务器向客户端发送事件流。与WebSocket不同,SSE是单向的(只从服务器到客户端),专为数据流式传输设计,特别适合AI对话这类需要实时展示生成内容的场景。SSE的主要优势:基于标准HTTP,无需额外协议自动重连机制支持事件ID和自定义事件类型轻量级,实现简单1.2SS
- 试题公式ocr识别数据集
试题公式ocr识别数据集insurance_formula_latexhttps://github.com/LeeXYZABC/insurance_formula_latex.gitreference---
- LLM Agent在多模态任务中的推理机制详解
文章目录一、引言二、多模态LLMAgent的基本架构2.1系统组成2.2工作流程图三、多模态表示与对齐3.1跨模态嵌入空间3.2模态对齐技术四、多模态推理策略4.1基于提示的推理(Prompt-basedReasoning)4.2多模态思维链(CoT)推理4.3多模态工具使用五、实现案例:多模态问答系统5.1系统架构5.2示例应用六、高级多模态推理技术6.1多模态递归推理6.2多模态记忆与检索6.
- jmeter的时间戳函数使用
flower_1111
代码jmeterjmeter
原文:https://blog.csdn.net/jocleyn/article/details/834144331、__time:获取时间戳、格式化时间(1)、${__time(yyyy-MM-ddHH:mm:ss:SSS,time)}:格式化生成时间格式2018-10-2611:08:23:635(2)、${__time(,)}:默认该公式精确到毫秒级别,13位数1527822855323(3
- Python 实战人工智能数学基础:推荐系统应用
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.背景介绍2.核心概念与联系2.1用户画像2.2相似性计算2.2.1基于物品的相似度2.2.2基于用户的相似度2.3协同过滤算法2.3.1基于用户的协同过滤算法2.3.2基于物品的协同过滤算法2.3.3基于上下文的协同过滤算法3.核心算法原理和具体操作步骤以及数学模型公式详细讲解3.1基于用户的协同过滤算法3.2基于物品的协同过滤算法3.3混合协同过滤算法3.
- word中viso/math type公式比文字大
主要是mathtype中字号和word中字号是分别设置的,需要单独点开复制之后的公式,进入编辑状态,调整大小,让mathtype所对应的pt磅值和word中所对应的字号一样。字号对应关系如何调mathtype大小viso同理
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- 动态时间规整(Dynamic Time Warping,DTW)补充案例
EmorZhong
python人工智能机器学习算法动态规划
DTW的边界条件是确保累积距离矩阵计算“有起点、有规则”的基础,它规定了矩阵中第一行和第一列的累积距离如何计算(因为这两行/列是路径的“起点边缘”,没有“上一步”的全部选择)。下面结合具体场景和例子展开说明:为什么需要边界条件?累积距离矩阵(D[i][j])的核心递归公式是:[D[i][j]=\text{dist}[i][j]+\min\left(D[i-1][j],\D[i][j-1],\D[i
- 突破传统:Dell R730服务器RAID 5配置与智能监控全解析
芯作者
D2:ubuntu服务器linuxubuntu
在现代数据中心运维中,合理的存储配置是保障业务连续性的基石。今天,我们将深入探索DellPowerEdgeR730服务器的RAID5配置技巧,并结合热备盘策略、自动化监控脚本以及性能调优方案,为您呈现一份别开生面的技术指南。一、为什么RAID5+热备盘是企业级存储的黄金组合?RAID5通过分布式奇偶校验实现数据冗余,允许单块硬盘故障时不丢失数据。其存储效率公式为:Efficiency=\frac{
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 无人机飞控系统中气压计软件驱动与应用入门指南
bother3000
无人机硬件嵌入式开发无人机无人机#传感器stm32无人机嵌入式硬件PX4航空仪表气压计可信计算技术
一、气压计在飞控系统中的核心作用1.1气压计的基本原理气压计(Barometer)基于压阻效应或电容效应工作,通过测量空气压力计算飞行高度。其基本公式为:其中:1.2在飞控系统中的关键应用应用场景具体作用高度测量提供绝对高度数据,精度通常为±0.5米(标准大气压下)定高飞行作为PID控制器的高度输入,实现稳定悬停气压趋势分析通过气压变化率判断上升/下降趋势,辅助姿态控制高度融合滤波与GPS高度、超
- 语音信号基础篇1-预加重(Pre-emphasis)
沐黎~
信号与系统语音识别人工智能
预加重就是对语音信号的高频进行补偿,语音信号90%能量集中在有效带宽低频分量上,高频分量频谱(一般我们用其幅度谱,通俗将就是频谱的模长或者绝对值长度)较小,我们让它变大一定,占比多,增强其高频分量。预加重原理也非常简单,其时域表达式非常简单,如下式子:公式中:一般取0.97时域看着就简单后一个减去前一个,看不出有什么规律,我们对其进行z变换,可得:合并同类项,可得:自变量为z,我们画出z变化后的频
- 数据结构——1.数据结构和算法
爱看烟花的码农
数据结构数据结构
第一部分:笔试核心概念(理论知识)一、数据结构绪论什么是数据结构?数据结构不仅仅是数据,而是研究如何组织数据(结构化信息)的方法,目的是为了能够高效地处理这些数据。一个经典的公式是:算法+数据结构=程序。这表明,好的程序离不开高效的数据组织方式和处理算法。基本概念与术语数据(Data):是计算机可以识别、存储和处理的符号总称,是程序处理的“原料”。例如,一张图片、一段文字、股票行情、心电图数据等。
- Text2Reward学习笔记
1.提示词请问,“glew”是一个RL工程师常用的工具库吗?请问,thiscodebase主要是做什么用的呀?1.1解释代码是否可以请您根据thiscodebase的主要功能,参考PyTorch的文档格式和文档风格,使用Markdown格式为选中的代码行编写一段相应的文档说明呢?2.项目环境配置2.1新建环境[official]2.1.1Featurizecondacreate-p~/work/d
- 12 | 走向元宇宙:数字化工作与生活
_Rye_
元宇宙
专栏快接近尾声了。在之前的课程里,我们一直在用一个框架来概括元宇宙,那就是:元宇宙=立体互联网+价值互联网。这个公式可以帮助我们从宏观角度更好地理解元宇宙。当我们回归工作和生活,用更加个人化的角度来观察元宇宙时,我们可以换用另外一个等式:元宇宙=实体空间+数字空间。通过这个等式,我们可以看到,元宇宙将带给我们线上线下全面融合的数字生活。这一讲的讨论分成两个部分。首先,我们来看看自己周围的数字化发展
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 带印章的财务报表有什么工具可以解析?
TextIn智能文档云平台
文档解析人工智能textin
TextIn的文档解析工具可以解决财务报表的精准解析。不止印章,TextIn文档解析可以将文档中的复杂表格、手写笔记、图片印章等进行梳理,转换成大模型友好的内容格式(Markdown)。日常财务报表中常见手写签名、批注及各类印章覆盖,对传统OCR识别构成巨大挑战。TextIn文档解析具备强大的图像处理与文字识别能力,能有效分离背景印章干扰,清晰辨识覆盖文字,并对潦草、连笔的手写体保持较高的识别准确
- MinerU:高效智能PDF文档解析工具完全指南
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。目录一、简介二、主要功能三、环境支持1.软硬件环境支持说明2.系统与硬件要求四、本地部署1.创建Python虚拟环境2.安装MinerU2.1使用pip或uv安装2.2源码安装3.使用MinerU3.1命令行使用方式基础用法查看帮助信息参数详解3.2模型源配置3.3使用本地模型总结一、简
- 如何用python处理excel的数据(极值标准化)?
bug菌¹
全栈Bug调优(实战版)python极值标准化数据excel
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案极值标准化公式:步骤:代码示例:代码说明:示例文件:额外功能:安装依赖:文末福利,等你来拿!✨️WhoamI?问题描述如何用python处理ex
- 海思平台ISP系列从零开始:一、PQTools工具的使用总结
斟茶兵
海思平台基础的Imagesensor问题分析isp嵌入式
海思平台ISP系列:一.PQTools工具使用方法正所谓工欲善其事必先利其器,磨刀不误砍柴工,想要在海思平台开始IQ,就得利用海思SDK中提供的PQTools工具,这个工具作的很好的,里边有很多图像分析的工具,下面就开始介绍:工具入式如何使用:在海思的SDK开发包中,包含了PQTools使用的软件,以我使用的Hi33516DV300为例,PQTools工具包的目录如下:Hi3516CV500R00
- 掌握 Spring Data Redis,提升后端开发效率
掌握SpringDataRedis,提升后端开发效率关键词:SpringDataRedis、后端开发、缓存、数据持久化、效率提升摘要:本文旨在深入探讨SpringDataRedis这一强大的工具,帮助后端开发者更好地掌握它以提升开发效率。首先介绍SpringDataRedis的背景知识,包括其目的、适用读者等。接着详细阐述核心概念与联系,分析核心算法原理并给出具体操作步骤,通过数学模型和公式加深理
- Python 机器学习核心入门与实战进阶 Day 8 - 数据建模与分析项目实战预备:项目规划与需求拆解
蓝婷儿
pythonpython机器学习开发语言
✅今日目标理解数据分析/建模项目的一般流程练习项目需求理解与目标拆解明确后续模型评估指标与预期交付成果起草项目计划文档(可选写为Markdown)一、项目背景与题目建议(可选方向)项目名称简介学生成绩预测分析系统根据历史表现预测成绩是否达标、学科薄弱点等求职者简历筛选模型根据简历信息预测是否通过初筛电商用户购买预测系统分析用户行为数据预测是否购买公司销售数据趋势分析可视化+聚合分析:月销售趋势、区
- Oracle 数据库管理与维护实战指南(用户权限、备份恢复、性能调优)
白仑色
Oracle系列数据库oracle数据库管理性能调优备份恢复
关键词:Oracle用户权限管理、冷热备份、RMAN备份、AWR报告、SQL调优、等待事件分析✅摘要在企业级Oracle数据库运维中,用户权限管理、数据备份恢复机制、性能监控与调优是保障系统安全、稳定和高效运行的三大核心任务。本文将围绕以下内容进行详细讲解:用户与权限管理:创建用户、角色、授权与回收权限备份与恢复策略:物理备份(冷/热)、逻辑备份(EXP/IMP)、RMAN工具使用性能监控与调优:
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- Rust后端框架:助力快速开发
大厂资深架构师
SpringBoot开发实战rust网络开发语言ai
Rust后端框架:助力快速开发关键词:Rust、后端框架、快速开发、高性能、内存安全摘要:本文深入探讨了Rust后端框架在快速开发中的重要作用。首先介绍了Rust语言的背景及其在后端开发领域的崛起原因,接着详细阐述了常见Rust后端框架的核心概念、架构和工作原理,通过Python示例类比讲解了核心算法原理和具体操作步骤,还给出了相关的数学模型和公式。在项目实战部分,展示了如何搭建开发环境、实现源代
- 后端领域的自然语言处理技术应用
大厂资深架构师
SpringBoot开发实战自然语言处理easyui人工智能ai
后端领域的自然语言处理技术应用关键词:后端领域、自然语言处理、技术应用、算法原理、实际案例摘要:本文聚焦于后端领域中自然语言处理技术的应用。首先介绍了相关背景,包括目的范围、预期读者等。接着阐述核心概念与联系,通过文本示意图和Mermaid流程图展示其原理和架构。详细讲解了核心算法原理并给出Python源代码示例,同时介绍了数学模型和公式。通过项目实战,展示代码实际案例并进行详细解释。分析了自然语
- 题解:P13017 [GESP202506 七级] 线图
YLCHUP
刷题之路算法图论深度优先数学建模c++数据结构笔记
首先明白定义:线图L(G)L(G)L(G)的顶点对应原图GGG的边,当且仅当原图中的两条边有公共顶点时,对应的线图顶点之间有一条边。不难想到,对于原图中的每个顶点vvv,其度数d(v)d(v)d(v)对应的边集可以形成(d(v)2)\binom{d(v)}{2}(2d(v))对相邻边。每对相邻边在线图中会产生一条边。用公式表示就是这样的(设G=(V,E)G=(V,E)G=(V,E)):∣EL(G)
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理